首页> 外文期刊>Neurocomputing >Noise-tolerant neural algorithm for online solving time-varying full-rank matrix Moore-Penrose inverse problems: A control-theoretic approach
【24h】

Noise-tolerant neural algorithm for online solving time-varying full-rank matrix Moore-Penrose inverse problems: A control-theoretic approach

机译:用于在线解决时变全秩矩阵Moore-PenRose逆问题的抗噪声神经算法:一种控制理论方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, zeroing neural network models are redesigned and analyzed from a control-theoretical framework for online solving time-varying full-rank Moore-Penrose inversions. To solve time-varying full-rank Moore-Penrose inverse problems with different noises in real time, some modified zeroing neural network models are developed, analyzed and investigated from the perspective of control. Furthermore, the proposed zeroing neural network models globally converge to the theoretical solution of the full-rank Moore-Penrose inverse problem without noises, and exponentially converge to the exact solution in the presence of noises, which are demonstrated theoretically. Moreover, in comparison with existing models, numerical simulations are provided to substantiate the feasibility and superiority of the proposed modified neural network for online solving time-varying full-rank Moore-Penrose problems with inherent tolerance to noises. In addition, the numerical results infer that different activation functions can be applied to accelerate the convergence speed of the zeroing neural network model. Finally, the proposed zeroing neural network models are applied to the motion generation of redundant robot manipulators, which illustrates its high efficiency and robustness. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,从对照理论框架进行了重新设计和分析了归零神经网络模型,以便在线解决时变全排名摩洛·彭罗斯反转的控制理论框架分析。为了实时解决不同噪声的时变全级摩洛·彭咯队逆问题,从控制的角度开发,分析和研究了一些修改的归零神经网络模型。此外,该归零神经网络模型全局会聚到全级摩洛猪渗透反问题的理论解决方案而没有噪声,并且在理论上对噪声的存在下指数地收敛到确切的解决方案。此外,与现有模型相比,提供了数值模拟,以证实提出的修改的神经网络的可行性和优越性,以便在线解决与噪声固有的公差的固有公差的在线解决时变的全级摩洛队问题。另外,数值结果推断,可以应用不同的激活功能以加速归零神经网络模型的收敛速度。最后,提出的归零神经网络模型应用于冗余机器人操纵器的运动生成,其表示其高效率和鲁棒性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号