首页> 外文期刊>Neurocomputing >SAANet: Siamese action-units attention network for improving dynamic facial expression recognition
【24h】

SAANet: Siamese action-units attention network for improving dynamic facial expression recognition

机译:SAANET:暹罗动作单位注意力网络,用于提高动态面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

Facial expression recognition (FER) has a wide variety of applications ranging from human-computer interaction, robotics to health care. Although FER has made significant progress with the success of Convolutional Neural Network (CNN), it is still challenging especially for the video-based FER due to the dynamic changes in facial actions. Since the specific divergences exists among different expressions, we introduce a metric learning framework with a siamese cascaded structure that learns a fine-grained distinction for different expressions in video-based task. We also develop a pairwise sampling strategy for such metric learning framework. Furthermore, we propose a novel action-units attention mechanism tailored to FER task to extract spatial contexts from the emotion regions. This mechanism works as a sparse self-attention fashion to enable a single feature from any position to perceive features of the action-units (AUs) parts (eyebrows, eyes, nose, and mouth). Besides, an attentive pooling module is designed to select informative items over the video sequences by capturing the temporal importance. We conduct the experiments on four widely used datasets (CK+, Oulu-CASIA, MMI, and AffectNet), and also do experiment on the wild dataset AFEW to further investigate the robustness of our proposed method. Results demonstrate that our approach outperforms existing state-of-the-art methods. More in details, we give the ablation study of each component. (C) 2020 Elsevier B.V. All rights reserved.
机译:面部表情识别(FER)具有从人机互动,机器人对医疗保健的各种应用。虽然FER在卷积神经网络的成功(CNN)的成功取得了重大进展,但由于面部动作的动态变化,它仍然挑战。由于特定的分歧存在于不同的表达式中,我们介绍了一个度量学习框架,其与暹罗级联结构,该结构在基于视频的任务中为不同的表达学习了微粒区分。我们还为此类公制学习框架制定了一对成对的采样策略。此外,我们提出了一种新的动作单位注意力机制,以便于FER任务,以从情绪区域提取空间环境。这种机制作为稀疏的自我关注方式,使单一特征能够从任何位置到感知动作单位(AUS)部件(眉毛,眼睛,鼻子和嘴)的特征。此外,专注池模块旨在通过捕获时间重要性来在视频序列上选择信息。我们在四个广泛使用的数据集(CK +,Oulu-Casia,MMI和EffectNet)上进行实验,并在野外数据集中进行实验,以进一步调查我们提出的方法的稳健性。结果表明,我们的方法优于现有的最先进的方法。更多详细信息,我们给出了每个组件的消融研究。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第6期|145-157|共13页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan Peoples R China;

    Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai Peoples R China;

    Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan Peoples R China;

    Huazhong Univ Sci & Technol Sch Cyber Sci & Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Comp Sci Dept Wuhan Peoples R China;

    Univ Technol Sydney Fac Engn & Informat Technol Ctr Artificial Intelligence Ultimo NSW 2007 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Facial expression recognition; Metric Learning; Action-units attention; Sampling strategy;

    机译:面部表情识别;度量学习;动作单位注意;采样策略;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号