首页> 外文期刊>Neurocomputing >Scalable deep asymmetric hashing via unequal-dimensional embeddings for image similarity search
【24h】

Scalable deep asymmetric hashing via unequal-dimensional embeddings for image similarity search

机译:通过不等维嵌入的可扩展深不对称散列,用于图像相似性搜索

获取原文
获取原文并翻译 | 示例

摘要

In recent years, Hashing has become a popular technique used to support large-scale image retrieval, due to its significantly reduced storage, high search speed and capability of mapping high dimensional original features into compact similarity-preserving binary codes. Although effectiveness achieved, most existing hashing methods are still some limitations, including: (1) Many supervised hashing methods only transform the label information into pairwise similarities to guide the hash code learning process, which will lead to the loss of rich semantic information between image pairs. (2) Some pioneer hashing methods use a relaxation-based strategy to solve discrete problems, resulting in a large quantization error. (3) Some supervised hashing methods handle the hashing learning procedure based on an asymmetric learning manner, and although this partially solves the problems of low efficiency and accuracy of symmetric learning strategy, they are all based on the embeddings of equal dimension, which leads to the reduction in the models representation ability and an increase in potential noise. To overcome the above limitations, in this paper, we propose a novel yet simple but effective hashing method, named Scalable Deep Asymmetric Hashing (SDAH). Specifically, SDAH is an end-to-end deep hashing method based on a fast iterative optimization strategy, which utilizes two real-valued embeddings of unequal dimensions, i.e., real-valued embeddings of images and labels, to flexibly perform asymmetric similarity computation. It can circumvent the use of the large pairwise similarity matrix by introducing an intermediate label matrix term which results in a remarkable reduction in the memory space cost. By doing this, the learned hash codes are more semantically informative for image retrieval tasks. Experimental results on several benchmark datasets highlight the superiority of SDAH in comparison with many state-of-theart hashing methods. (c) 2020 Elsevier B.V. All rights reserved.
机译:近年来,由于其显着降低了存储,高搜索速度和将高维原始特征映射到紧凑的相似性维护二进制代码,因此哈希已成为一种用于支持大规模图像检索的流行技术。虽然实现了有效性,但大多数现有的散列方法仍然存在一些限制,包括:(1)许多监督散列方法只将标签信息转换为配对相似之处,以指导哈希码学习过程,这将导致图像之间的丰富语义信息丢失对。 (2)一些先锋散列方法使用基于放松的策略来解决离散问题,从而导致大量化误差。 (3)一些监督散列方法根据不对称的学习方式处理散列学习程序,尽管这部分解决了对称学习策略的低效率和准确性的问题,但它们都是基于平等维度的嵌入式,这导致模型表示能力的减少和潜在噪声的增加。为了克服上述限制,在本文中,我们提出了一种新颖的简单但有效的散列方法,名为可扩展的深层不对称散列(SDAH)。具体而言,SDAH是基于快速迭代优化策略的端到端深度散列方法,它利用两个不等维度的实际嵌入的嵌入,即图像和标签的实际值嵌入,以灵活地执行非对称相似性计算。它可以通过引入中间标签矩阵术语来规避大量相似矩阵的使用,这导致存储空间成本显着降低。通过这样做,学习的哈希代码更加语义上提供图像检索任务。几个基准数据集上的实验结果突出了SDAH的优越性与许多左右的哈希方法相比。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|262-275|共14页
  • 作者单位

    Cent South Univ Sch Comp Sci & Engn Changsha 410000 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410000 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410000 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410000 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410000 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410000 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410000 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410000 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410000 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410000 Hunan Peoples R China;

    Cent South Univ Sch Comp Sci & Engn Changsha 410000 Hunan Peoples R China|Network Resources Management & Trust Evaluat Key Changsha 410000 Hunan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image retrieval; Matrix tri-factorization; Supervised learning; Semantic hashing; Unequal-dimensional embeddings;

    机译:图像检索;矩阵三分化;监督学习;语义哈希;不平等的嵌入;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号