首页> 外文期刊>Image Processing, IEEE Transactions on >Bit-Scalable Deep Hashing With Regularized Similarity Learning for Image Retrieval and Person Re-Identification
【24h】

Bit-Scalable Deep Hashing With Regularized Similarity Learning for Image Retrieval and Person Re-Identification

机译:具有图像检索和人员重新识别的正则相似学习的位可扩展深度哈希

获取原文
获取原文并翻译 | 示例

摘要

Extracting informative image features and learning effective approximate hashing functions are two crucial steps in image retrieval. Conventional methods often study these two steps separately, e.g., learning hash functions from a predefined hand-crafted feature space. Meanwhile, the bit lengths of output hashing codes are preset in the most previous methods, neglecting the significance level of different bits and restricting their practical flexibility. To address these issues, we propose a supervised learning framework to generate compact and bit-scalable hashing codes directly from raw images. We pose hashing learning as a problem of regularized similarity learning. In particular, we organize the training images into a batch of triplet samples, each sample containing two images with the same label and one with a different label. With these triplet samples, we maximize the margin between the matched pairs and the mismatched pairs in the Hamming space. In addition, a regularization term is introduced to enforce the adjacency consistency, i.e., images of similar appearances should have similar codes. The deep convolutional neural network is utilized to train the model in an end-to-end fashion, where discriminative image features and hash functions are simultaneously optimized. Furthermore, each bit of our hashing codes is unequally weighted, so that we can manipulate the code lengths by truncating the insignificant bits. Our framework outperforms state-of-the-arts on public benchmarks of similar image search and also achieves promising results in the application of person re-identification in surveillance. It is also shown that the generated bit-scalable hashing codes well preserve the discriminative powers with shorter code lengths.
机译:提取信息图像特征和学习有效的近似哈希函数是图像检索中的两个关键步骤。常规方法通常分别研究这两个步骤,例如,从预定义的手工特征空间中学习哈希函数。同时,输出散列码的比特长度是在大多数现有方法中预设的,从而忽略了不同比特的有效程度,并限制了它们的实际灵活性。为了解决这些问题,我们提出了一种监督学习框架,可直接从原始图像生成紧凑且可按位缩放的哈希码。我们将哈希学习视为正则相似学习的问题。特别是,我们将训练图像组织成一批三重样本,每个样本包含两个带有相同标签的图像和一个带有不同标签的图像。使用这些三元组样本,我们使汉明空间中匹配对和不匹配对之间的裕度最大化。另外,引入了正则化术语以增强邻接一致性,即,相似外观的图像应具有相似代码。深度卷积神经网络被用来以端到端的方式训练模型,其中可区分的图像特征和哈希函数被同时优化。此外,我们的哈希码的每个比特的权重均不相等,因此我们可以通过舍弃无关紧要的比特来操纵代码长度。在类似图像搜索的公共基准方面,我们的框架性能优于最新技术,并且在监视中重新识别人的应用方面也取得了可喜的成果。还表明,所生成的可按位缩放的哈希码很好地保留了具有较短代码长度的判别能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号