首页> 外文期刊>Neurocomputing >Joint distribution matching embedding for unsupervised domain adaptation
【24h】

Joint distribution matching embedding for unsupervised domain adaptation

机译:无监督域适应的联合分布匹配嵌入

获取原文
获取原文并翻译 | 示例

摘要

When the distributions between the source (training) and target (test) datasets are different, the performance of classical statistical learning methods degrades significantly. Domain adaptation (DA) aims at correcting this distribution mismatch and narrowing down the distribution discrepancy. Existing methods mostly focus on correcting the mismatch between the marginal distributions and/or the class-conditional distributions. In this paper, we assume that the distribution mismatch in domain adaptation is the joint distribution mismatch, and propose an Extended Maximum Mean Discrepancy (EMMD) metric to measure the distance between joint distributions. Based on this metric, we propose the Joint Distribution Matching Embedding (JDME) approach, which finds a mapping matrix to project the samples into a latent space, where the EMMD between the source and target joint distributions is minimized. The resultant orthogonal-constrained optimization problem can be solved in the form of an unconstrained problem on the Grassmann manifold. After the joint distribution matching, we can expect the classical statistical learning methods to perform well on the target dataset. Experiments on object recognition, face recognition, and spam filtering demonstrate that our method statistically outperforms the state-of-the-art shallow methods and is also on par with the deep learning methods. (c) 2020 Elsevier B.V. All rights reserved.
机译:当源(训练)和目标(测试)数据集之间的分布不同,经典统计学习方法的性能显着降低。域适应(DA)旨在纠正该分布不匹配并缩小分布差异。现有方法主要集中在校正边缘分布和/或条件分布之间的不匹配。在本文中,我们假设域适应的分发失配是联合分配不匹配,并提出扩展的最大平均差异(EMMD)度量来测量联合分布之间的距离。基于该度量,我们提出了联合分布匹配嵌入(JDME)方法,该方法发现映射矩阵将样本投影到潜伏空间中,其中源和目标联合分布之间的EMMD最小化。所得到的正交受限的优化问题可以以基于基地歧管的不受约束问题的形式解决。在联合分发匹配之后,我们可以预期经典的统计学习方法在目标数据集上执行良好。对物体识别,人脸识别和垃圾邮件过滤的实验表明,我们的方法统计上呈现最先进的浅方法,也与深度学习方法相提并论。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|115-128|共14页
  • 作者单位

    South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Domain adaptation; Joint distribution; Maximum mean discrepancy; Grassmann manifold;

    机译:域适应;联合分布;最大均值差异;基层歧管;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号