首页> 外文期刊>Neurocomputing >Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism
【24h】

Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism

机译:数字货币投资组合交易系统:多维着关注机构的深度增强学习

获取原文
获取原文并翻译 | 示例

摘要

As a hot topic in the financial engineering, the portfolio optimization aims to increase investors' wealth. In this paper, a portfolio management system based on deep-reinforcement learning is proposed. In contrast to inflexible traditional methods, the proposed system achieves a better trading strategy through Reinforcement learning. The reward signal of Reinforcement learning is updated by action weights from Deep learning networks. Low price, high price and close price constitute the inputs, but the importance of these three features is quite different. Traditional methods and the classical CNN can't deal with these three features separately, but in our method, a designed depth convolution is proposed to deal with these three features separately. In a virtual currency market, the price rise only occurs in a flash. Traditional methods and CNN networks can't accurately judge the critical time. In order to solve this problem, a three-dimensional attention gating network is proposed and it gives higher weights on rising moments and assets. Under different market conditions, the proposed system achieves more substantial returns and greatly improves the Sharpe ratios. The short-term risk index of the proposed system is lower than those of the traditional algorithms. Simulation results show that the traditional algorithms (including Best, CRP, PAMR, CWMR and CNN) are unable to perform as well as our approach. (C) 2020 Elsevier B.V. All rights reserved.
机译:作为金融工程中的热门话题,投资组合优化旨在提高投资者的财富。本文提出了一种基于深加固学习的投资组合管理系统。与不灵活的传统方法相比,建议的系统通过加强学习实现了更好的交易策略。钢筋学习的奖励信号由深度学习网络的动作权重更新。价格低廉,价格低廉的价格构成投入,但这三个功能的重要性是完全不同的。传统方法和古典CNN不能单独处理这三个特征,但在我们的方法中,提出了一种设计的深度卷积来分别处理这三个特征。在虚拟货币市场中,价格上涨仅发生在闪光灯中。传统方法和CNN网络无法准确判断关键时间。为了解决这个问题,提出了一种三维关注网络,并在上升的时刻和资产上提供更高的权重。在不同的市场条件下,拟议的系统实现了更大的回报,大大提高了夏普比率。所提出的系统的短期风险指数低于传统算法的短期风险指数。仿真结果表明,传统算法(包括最佳,CRP,PAMR,CWMR和CNN)无法执行和我们的方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第18期|171-182|共12页
  • 作者单位

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing 210044 Peoples R China;

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing 210044 Peoples R China;

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing 210044 Peoples R China;

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing 210044 Peoples R China;

    Nanjing Forestry Univ Coll Informat Sci & Technol Nanjing 210037 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Portfolio; Deep-reinforcement learning; Reinforcement learning; Attention gating mechanism;

    机译:投资组合;深加固学习;加固学习;注意门控机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号