首页> 外文期刊>Neurocomputing >Deep recursive up-down sampling networks for single image super-resolution
【24h】

Deep recursive up-down sampling networks for single image super-resolution

机译:用于单图像超分辨率的深度递归上下采样网络

获取原文
获取原文并翻译 | 示例

摘要

Single image super-resolution (SISR) technology can reconstruct a high-resolution (HR) image from the corresponding low-resolution (LR) image. The emergence of deep learning pushes SISR to a new level. The successful application of the recursive network motivates us to explore a more efficient SISR method. In this paper, we propose the deep recursive up-down sampling networks (DRUDN) for SISR. In DRUDN, an original LR image is directly fed without extra interpolation. Then, we use the sophisticated recursive up-down sampling blocks (RUDB) to learn the complex mapping between the LR image and the HR image. At the reconstruction part, the feature map is up-scaled to the ideal size by a de-convolutional layer. Extensive experiments demonstrate that DRUDN outperforms the state-of-the-art methods in both subjective effects and objective evaluation. (C) 2019 Elsevier B.V. All rights reserved.
机译:单个图像超分辨率(SISR)技术可以从相应的低分辨率(LR)图像重建高分辨率(HR)图像。深度学习的出现将SISR推向一个新的水平。递归网络的成功应用程序激励我们探索更有效的SISR方法。在本文中,我们为SISR提出了深度递归上下采样网络(DRUDN)。在Drudn中,在没有额外的插值的情况下直接馈送原始LR图像。然后,我们使用复杂的递归上下采样块(Rudb)来学习LR图像和HR图像之间的复杂映射。在重建部分,特征贴图将由去卷积层上缩放到理想尺寸。广泛的实验表明,Drudn在主观效果和客观评估中表明了最先进的方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul20期|377-388|共12页
  • 作者单位

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China|Minjiang Univ Fujian Prov Key Lab Informat Proc & Intelligent C Fuzhou 350121 Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China;

    Univ Calif Santa Barbara Dept Elect & Comp Engn Santa Barbara CA 93106 USA;

    Minjiang Univ Fujian Prov Key Lab Informat Proc & Intelligent C Fuzhou 350121 Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China|Minjiang Univ Fujian Prov Key Lab Informat Proc & Intelligent C Fuzhou 350121 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Single image super-resolution (SISR); Deep learning; Recursive network; De-convolutional layer;

    机译:单图像超分辨率(SISR);深度学习;递归网络;去卷积层;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号