首页> 外文期刊>Neurocomputing >Single image super-resolution with multi-level feature fusion recursive network
【24h】

Single image super-resolution with multi-level feature fusion recursive network

机译:具有多级特征融合递归网络的单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Recursive learning can widen the receptive field of deep convolutional neural network while do not increase model parameters with parameters sharing. And dense skip connections can promote deep feature representation ability by reusing deep features in different receptive fields. Both techniques are very beneficial to improve performance in image restoration tasks. In this paper, we propose a new end to end deep network for single image super-resolution (SISR) by using both recursive residual feature extraction and multi-level features fusion, in which the multi-level deep features are firstly produced from the input low resolution (LR) image by recursive convolution units, and then fused to reconstruct high resolution (HR) image. The proposed scheme could achieve good super-resolution performance with relatively low complexity. Extensive experimental results on the benchmark tests verify the effectiveness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
机译:递归学习可以拓宽深度卷积神经网络的接受范围,而不会通过共享参数来增加模型参数。密集的跳过连接可以通过在不同的接受域中重用深层特征来提升深层特征表示能力。两种技术都非常有益于提高图像恢复任务的性能。在本文中,我们通过使用递归残差特征提取和多级特征融合,为单图像超分辨率(SISR)提出了一种新的端到端深度网络,其中首先从输入生成多级深度特征递归卷积单元处理低分辨率(LR)图像,然后融合以重建高分辨率(HR)图像。所提出的方案可以以较低的复杂度实现良好的超分辨率性能。基准测试的大量实验结果证明了该方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第22期|166-173|共8页
  • 作者单位

    South Cent Univ Nationalities Coll Elect & Informat Engn Wuhan 430074 Hubei Peoples R China;

    Wuhan Text Univ Sch Math & Comp Sci Wuhan 430200 Hubei Peoples R China;

    South Cent Univ Nationalities Coll Elect & Informat Engn Wuhan 430074 Hubei Peoples R China|South Cent Univ Nationalities Hubei Key Lab Intelligent Wireless Commun Wuhan 430074 Hubei Peoples R China;

    South Cent Univ Nationalities Sch Comp Sci Wuhan 430074 Hubei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Single image super resolution; Deep convolutional neural network; Recursive learning; Multi-level feature fusion;

    机译:单张图像超分辨率;深度卷积神经网络递归学习;多级特征融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号