首页> 外文期刊>IEEE signal processing letters >Lightweight Feature Fusion Network for Single Image Super-Resolution
【24h】

Lightweight Feature Fusion Network for Single Image Super-Resolution

机译:轻量级特征融合网络,可实现单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Single image super-resolution (SISR) has witnessed great progress as convolutional neural network (CNN) gets deeper and wider. However, enormous parameters hinder its application to real world problems. In this letter, We propose a lightweight feature fusion network (LFFN) that can fully explore multi-scale contextual information and greatly reduce network parameters while maximizing SISR results. LFFN is built on spindle blocks and a softmax feature fusion module (SFFM). Specifically, a spindle block is composed of a dimension extension unit, a feature exploration unit. and a feature refinement unit. The dimension extension layer expands low dimension to high dimension and implicitly learns the feature maps which are suitable for the next unit. The feature exploration unit performs linear and nonlinear feature exploration aimed at different feature maps. The feature refinement layer is used to fuse and refine features. SFFM fuses the features from different modules in a self-adaptive learning manner with softmax function, making full use of hierarchical information with a small amount of parameter cost. Both qualitative and quantitative experiments on benchmark datasets show that LFFN achieves favorable performance against state-of-the-art methods with similar parameters.
机译:随着卷积神经网络(CNN)越来越深入,单图像超分辨率(SISR)取得了长足的进步。但是,巨大的参数阻碍了它在现实世界中的应用。在这封信中,我们提出了一种轻量级的特征融合网络(LFFN),它可以充分探索多尺度上下文信息,并在最大程度提高SISR结果的同时大大减少网络参数。 LFFN建立在主轴块和softmax功能融合模块(SFFM)上。具体地,主轴块由尺寸扩展单元,特征探索单元组成。和特征优化单元。维度扩展层将低维度扩展为高维度,并隐式学习适用于下一单元的特征图。特征探索单元针对不同的特征图执行线性和非线性特征探索。特征细化层用于融合和细化特征。 SFFM通过softmax功能以自适应学习的方式融合了来自不同模块的功能,从而以较少的参数成本充分利用了层次信息。在基准数据集上进行的定性和定量实验均表明,LFFN相对于具有类似参数的最新方法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号