首页> 外文期刊>Neurocomputing >Learning to detect Android malware via opcode sequences
【24h】

Learning to detect Android malware via opcode sequences

机译:学习通过操作码序列检测Android恶意软件

获取原文
获取原文并翻译 | 示例

摘要

A large number of Android malware samples can be deployed as the variants of the previously known samples. In consequence, a classification system capable of supporting a large set of samples is required to secure Android platform. Although a large set of variants requires scalability for automatic detection and classification, it also presents a significant advantage about a richer dataset at the stage of discovering underlying malicious activities and extracting representative features. Deep Neural Networks are built by a complex structure of layers whose parameters can be tuned and trained in order to enhance classification statistical metric results. Emerging parallelization computing tools and processors reduce computation time.In this paper, we propose a deep learning Android malware detection method using features extracted from instruction call graphs. The presented method examines all possible execution paths and the balanced dataset improves deep neural learning benign execution paths versus malicious paths. Since there is not a publicly available model for Android malware detection, we train deep networks from scratch. Then, we apply a grid search method to seek the optimal parameters of the network and to discover the combination of the hyper-parameters, which maximizes the statistical metric values. To validate the effectiveness of the proposed method, we evaluate with a balanced dataset constituted by 24,650 malicious and 25,0 00 benign samples. We evaluate the deep network architecture with respect to different parameters and compare the statistical metric values including runtime with respect to baseline classifiers. Our experimental results show that the presented malware detection is reached at 91.42% level in accuracy and 91.91% in F-measure, respectively. (C) 2019 Elsevier B.V. All rights reserved.
机译:可以部署大量的Android恶意软件样本作为先前已知的样本的变型。结果,需要一种能够支持大集样本的分类系统来保护Android平台。虽然大量变体需要用于自动检测和分类的可扩展性,但它在发现潜在的恶意活动和提取代表特征的阶段,它也呈现了关于更丰富的数据集的显着优势。深度神经网络由一个复杂的层结构构建,其参数可以进行调谐和培训,以便增强分类统计度量结果。新兴并行化计算工具和处理器减少计算时间。本文提出了一种深入学习Android恶意软件检测方法,使用从指令呼叫图中提取的功能。呈现的方法检查了所有可能的执行路径,平衡数据集提高了深度神经学习良性执行路径与恶意路径。由于没有公开的Android恶意软件检测模型,因此我们从头开始培训深度网络。然后,我们应用网格搜索方法来寻求网络的最佳参数,并发现超级参数的组合,最大化统计度量值。为了验证所提出的方法的有效性,我们将使用24,650个恶意和25,000次良性样本构成的平衡数据集进行评估。我们对不同参数评估了深度网络架构,并比较了与基线分类器相对于基线分类器的运行时的统计度量值。我们的实验结果表明,呈现的恶意软件检测分别以91.42%的水平达到91.42%,分别在F测量中达到91.91%。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号