首页> 外文期刊>Concurrency, practice and experience >Opcode sequence analysis of Android malware by a convolutional neural network
【24h】

Opcode sequence analysis of Android malware by a convolutional neural network

机译:卷积神经网络的Android恶意软件OPCode序列分析

获取原文
获取原文并翻译 | 示例

摘要

The number of malware has exploded due to the openness of the Android platform, and the endless stream of malware poses a threat to the privacy, tariffs, and device of mobile phone users. A novel Android mobile malware detection system is proposed, which employs an optimized deep convolutional neural network to learn from opcode sequences. The optimized convolutional neural network is trained multiple times by the raw opcode sequences extracted from the decompiled Android file, so that the feature information can be effectively learned and the malicious program can be detected more accurately. More critically, thek-max pooling method with better results is adopted in the pooling operation phase, which improves the detection effect of the proposed method. The experimental results show that the detection system achieved the accuracy of 99%, which is 2%-11% higher than the accuracy of the machine learning detection algorithms when using the same data set. It also ensures that the indicators, such as F1-score, recall, and precision, are maintained above 97%. Based on the detection system, a multi-data set comparison experiment is carried out. The introducedk-max pooling is deeply studied, and the effect ofkofk-max pooling on the overall detection effect is observed.
机译:由于Android平台的开放性,恶意软​​件的数量已爆炸,并且无休止的恶意软件流对手机用户的隐私,关税和设备构成威胁。提出了一种新颖的Android移动恶意软件检测系统,它采用优化的深度卷积神经网络来从操作码序列中学习。优化的卷积神经网络通过从分解的Android文件中提取的原始操作码序列多次培训,从而可以有效地学习特征信息,并且可以更准确地检测到恶意程序。更富豪地,在汇集操作阶段采用具有更好结果的K-Max池化方法,从而提高了所提出的方法的检测效果。实验结果表明,检测系统实现了99%的精度,比使用相同数据集时的机器学习检测算法的精度高2%-11%。它还确保指标,如F1分数,召回和精度,保持高于97%。基于检测系统,执行多数据集比较实验。深入研究了介绍了克 - 最大汇集,观察到KOFK-MAX池对整体检测效果的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号