首页> 外文期刊>Neurocomputing >Prevention of catastrophic interference and imposing active forgetting with generative methods
【24h】

Prevention of catastrophic interference and imposing active forgetting with generative methods

机译:用生成方法预防灾难性干扰和激活积极遗忘

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural networks experience serious catastrophic forgetting (or interference) when information is learned sequentially. A significant effort in the machine learning community is devoted to the solution of this problem. Many approaches to overcome the catastrophic interference (CI) find parallels with an organization of the human memory system. In this paper, we provide a review of biologically inspired approaches for CI prevention. The main emphasis is made on the development of methods inspired by generative properties of the brain. We developed and tested several methods for preventing CI using an artificial dataset generated on the base of previous experience of neural network. The proposed methods include the activation maximization approach, the method based on Bayesian learning, and the method based on generative neural networks. The methods based on a combination of episodic memory (several stored samples) and semantic memory (sampling of posterior probability function) show superiority compared to other recent methods devoted to CI prevention. Based on generative approaches, the biologically plausible mechanisms of active forgetting and memory reconsolidation are also demonstrated. The proof of concept experiments were performed on several publicly available datasets. (C) 2020 Elsevier B.V. All rights reserved.
机译:当顺序地学习信息时,人工神经网络体验严重的灾难性遗忘(或干扰)。机器学习界的重大努力致力于解决这个问题的解决方案。许多方法来克服灾难性干扰(CI)找到具有人为内存系统的组织的平行。在本文中,我们对CI预防的生物启发方法提供了综述。主要重点是通过大脑的生成特性启发的方法的发展。我们开发并测试了几种方法,用于防止CI使用在先前的神经网络经验的基础上产生的人工数据集。所提出的方法包括激活最大化方法,基于贝叶斯学习的方法,以及基于生成神经网络的方法。基于显口存储器(几个存储样本)和语义记忆(后验概率函数的采样)的方法显示出优越性,与致专用于CI预防的其他方法相比。基于生成方法,还证明了积极遗忘和记忆再氧化的生物合理的机制。概念实验证明是在几个公共可用数据集上进行的。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号