首页> 外文期刊>Neurocomputing >Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach
【24h】

Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach

机译:冗余移动机械手的跟踪控制:基于RNN的殖民培育方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,我们基于对移动操纵器的跟踪控制的基于移动机械手的态化优化算法提出了经常性神经网络(RNN)的拓扑。跟踪移动机器人控制的传统方法通常需要计算其数学模型的曲线逆或线性化。所提出的算法使用自然启发的优化方法来直接解决非线性优化问题而没有任何进一步的变换。首先,我们将跟踪控制作为受限制的优化问题制定。优化问题在位置级别中配制,以避免计算昂贵的雅比亚反演。通过向配制的优化问题添加平等约束来确保非完整的限制。然后,我们呈现甲虫天线嗅觉复发性神经网络(BAORNN)算法,以利用很少的数学操作有效地解决优化问题。我们对所提出的算法提供了理论分析,并表明其计算成本是关于自由度(DOF),即O(M)的线性。此外,我们还证明了其稳定性和融合。广泛的仿真结果是使用安装在差动驱动的推车上的IIWA14的模拟模型IIWA14的模拟模型。还提出了具有粒子群优化(PSO)算法的比较结果,以证明所提出的控制器的准确性和数值效率。结果表明,与PSO相比,所提出的算法在执行时更快地(最坏情况下最坏情况75),并且适合实时实现。三种不同轨迹的跟踪结果;呈圆形,矩形和罗丹夏路径。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号