首页> 外文期刊>Neurocomputing >£_1-norm low-rank linear approximation for accelerating deep neural networks
【24h】

£_1-norm low-rank linear approximation for accelerating deep neural networks

机译:_1常态低级线性近似,用于加速深神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a L-1-norm based low-rank matrix approximation method to decompose large high-complexity convolution layers into a set of low-complexity convolution layers with low-ranks to accelerate deep neural networks. Based on the alternating direction method (ADM), we derive a mathematical solution for this new L-1-norm based low-rank decomposition problem. Our experimental results on public datasets, including CIFAR-10 and ImageNet, demonstrate that this new decomposition scheme outperforms the recently developed L-2-norm based nonlinear decomposition method, which achieved the state-of-the-art performance. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,我们开发了一种基于L-1-NARM的低秩矩阵近似方法,将大的高复杂性卷积层分解成一组低复杂度卷积层,具有低级别以加速深度神经网络。基于交替方向方法(ADM),我们推导了基于新的L-1-Norm基的低秩分解问题的数学解决方案。我们在包括CiFar-10和ImageNet的公共数据集上的实验结果表明,这种新的分解方案优于最近开发的L-2标准的非线性分解方法,实现了最先进的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第4期|216-226|共11页
  • 作者单位

    Univ Missouri Dept Elect Engn & Comp Sci Columbia MO 65203 USA;

    Beijing Univ Civil Engn & Architecture Sch Sci Beijing 100044 Peoples R China;

    Univ Missouri Dept Elect Engn & Comp Sci Columbia MO 65203 USA;

    Univ Missouri Dept Elect Engn & Comp Sci Columbia MO 65203 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DCNNs acceleration; Low-rank approximation; Augmented Lagrange function;

    机译:dcnns加速度;低秩近似;增强拉格朗日功能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号