首页> 外文期刊>Neurocomputing >Dual-CNN: A Convolutional language decoder for paragraph image captioning
【24h】

Dual-CNN: A Convolutional language decoder for paragraph image captioning

机译:双CNN:段落标题的卷积语言解码器

获取原文
获取原文并翻译 | 示例

摘要

The task of paragraph image captioning aims to generate a coherent paragraph describing a given image. However, due to their limited ability to capture long-term dependency, recurrent neural network or long-short term memory based decoders could hardly generate satisfactory textual descriptions with a long paragraph. In addition, the training inefficiency in the sequential decoders is significantly observed. Motivated by the advantage of convolutional neural network (i.e., CNN), in this paper, we propose a Dual-CNN decoder with long-term memory ability and parallel computation, which can produce a semantically coherent paragraph for an image. Our Dual-CNN model is evaluated on the Stanford image-paragraph dataset. Extensive experiments demonstrate that our Dual-CNN achieves comparable results compared with state-of-the-art models. Furthermore, the diversity and coherence of generated paragraphs are analyzed to show the superiority of our approach. (C) 2020 Elsevier B.V. All rights reserved.
机译:段落标题的任务旨在生成描述给定图像的相干段落。然而,由于它们具有有限的捕获长期依赖性能力,经常性神经网络或基于长期内存的解码器可能几乎不能与长段产生令人满意的文本描述。此外,显着观察了顺序解码器的培训效率低下。在卷积神经网络(即,CNN)的优点是,本文提出了一种具有长期记忆能力和并行计算的双CNN解码器,其可以为图像产生语义相干段落。我们的双CNN模型在斯坦福州图像段落数据集上进行评估。广泛的实验表明,与最先进的模型相比,我们的双CNN达到了可比的结果。此外,分析了所生成的段落的多样性和连贯性以表明我们的方法的优势。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul5期|92-101|共10页
  • 作者单位

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China|Minist Educ Engn Res Ctr Informat Networks Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China|Minist Educ Engn Res Ctr Informat Networks Beijing 100876 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Language and vision; Convolutional neural networks; Image captioning;

    机译:深入学习;语言和愿景;卷积神经网络;图像标题;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号