首页> 外文期刊>Neurocomputing >A robust active contour model driven by pre-fitting bias correction and optimized fuzzy c-means algorithm for fast image segmentation
【24h】

A robust active contour model driven by pre-fitting bias correction and optimized fuzzy c-means algorithm for fast image segmentation

机译:通过预拟合偏置校正和优化模糊C-均值为快速图像分割驱动的鲁棒主动轮廓模型

获取原文
获取原文并翻译 | 示例

摘要

Active contour model (ACM) is an effective method for image segmentation that has been widely used in various research fields. For images with severe intensity inhomogeneity, most existing ACMs show a poor segmentation performance. Moreover, robustness of these models to initial contour and noise is unsatisfactory. To seek better approaches to these issues, this paper proposes an ACM driven by pre-fitting bias correction and optimized fuzzy c-means (FCM) algorithm, which is robust and achieves a fast segmentation. Firstly, an optimized FCM algorithm is presented, by which bias field is pre-estimated. Secondly, a criterion function for local intensity is defined, then integrated with respect to the center for a global criterion. Thirdly, the above theory is introduced into ACM according to the property of level set function. Fourthly, a novel regularization method is proposed for variational level set. Experiments on real and synthetic images prove that the proposed model can effectively segment images with severe intensity inhomogeneity. Compared with the bias correction model, there is no more time-consuming convolutions in iterations so that computational amount of our model is enormously reduced. Furthermore, the model has better robustness to both noise and initialization, segmentation efficiency and accuracy than most region-based models. (C) 2019 Elsevier B.V. All rights reserved.
机译:主动轮廓模型(ACM)是一种有效的图像分割方法,其已广泛用于各种研究领域。对于具有严重强度不均匀性的图像,大多数现有的ACM都显示出不良的分割性能。此外,这些模型对初始轮廓和噪声的鲁棒性是不令人满意的。为了寻求这些问题的更好方法,本文提出了通过预配合偏置校正和优化模糊C-MEAR(FCM)算法驱动的ACM,这是强大的,实现快速分割。首先,提出了一种优化的FCM算法,通过预先估计偏置字段。其次,定义了局部强度的标准函数,然后相对于全局标准集成到中心。第三,根据级别设定功能的性质,将上述理论引入ACM。第四,提出了一种用于变形水平集的新型正则化方法。真实和合成图像的实验证明,所提出的模型可以有效地分段图像具有严重的强度不均匀性。与偏置校正模型相比,在迭代中没有更耗时的卷积,以便大量减少模型的计算量。此外,该模型具有比大多数基于区域的模型的噪声和初始化,分割效率和准确性更好的鲁棒性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号