首页> 中文期刊> 《模式识别与人工智能》 >在核诱导的鲁棒度量下的模糊C-均值与可能性C-均值算法

在核诱导的鲁棒度量下的模糊C-均值与可能性C-均值算法

     

摘要

用核方法来改造传统的学习算法是近年来机器学习领域研究的一个热点.本文提出了一种新的应用核方法在原输入空间中进行聚类的思想,并把其推广应用于传统的聚类算法,得到模糊核C-均值算法和可能性核C-均值算法.该类算法的实质是在准则函数中采用了一类核诱导的非欧氏距离的新的距离度量,并且依据Huber的鲁棒统计分析,该类算法是内在鲁棒的,适合对不完整数据或缺失数据、含噪数据和野值的聚类.最后在人工和Benchmark数据集上对上述算法的性能进行了验证.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号