首页> 外文期刊>Neurocomputing >A sequential learning method with Kalman filter and extreme learning machine for regression and time series forecasting
【24h】

A sequential learning method with Kalman filter and extreme learning machine for regression and time series forecasting

机译:具有卡尔曼滤波器和极端学习机的顺序学习方法,用于回归和时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

In many regression and time series forecasting problems, the input data is not fully available at the beginning of the training phase. Conventional machine learning methods for batch data are not able to handle this problem. The sequential version of ELM, called Online Sequential Extreme Learning Machine (OS-ELM), addresses this problem through the least squares recursive solution for updating the network output weights. However, the implementation of OS-ELM and its extensions suffer from the problem of multicollinearity and its side effect on the variance of the weight estimates. This paper introduces a new method of sequential learning for handling the effects of multicollinearity. The proposed method, called Kalman Learning Machine (KLM), uses the Kalman filter to sequentially update the output weights of a Single Layer Feedforward Network (SLFN) based on OS-ELM. An extension of the proposed method, called Extended Kalman Learning Machine (EKLM), is presented in order to address the problem of nonlinear data. The proposed method was compared with some of the most recent and effective methods for handling the effects of multicollinearity in sequential learning problems. The experiments performed showed that the proposed method performs better than most state-of-the-art methods considering both the prediction error and training time. (C) 2019 Elsevier B.V. All rights reserved.
机译:在许多回归和时间序列预测问题中,输入数据在训练阶段的开始时不完全可用。批量数据的传统机器学习方法无法处理此问题。 ELM的顺序版本,称为在线顺序极端学习机(OS-ELM),通过最小二乘递归解决方案来解决该问题,用于更新网络输出权重。然而,OS-ELM的实施及其扩展遭受了多型性问题的问题及其对重量估计的方差的副作用。本文介绍了一种顺序学习方法,用于处理多重型性效应。所提出的方法,称为卡尔曼学习机(KLM),使用卡尔曼滤波器基于OS-ELM顺序更新单层前馈网络(SLFN)的输出权重。提出了一种被称为扩展卡尔曼学习机(EKLM)的所提出的方法的扩展,以解决非线性数据的问题。将所提出的方法与一些最新有效的方法进行比较,用于处理序贯学习问题中的多色性性的影响。所执行的实验表明,考虑到预测误差和培训时间,所提出的方法比大多数最先进的方法更好。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号