首页> 外文期刊>Neurocomputing >A graph-based approach to automated EUS image layer segmentation and abnormal region detection
【24h】

A graph-based approach to automated EUS image layer segmentation and abnormal region detection

机译:基于图形的自动化EUS图像层分割和异常区域检测方法

获取原文
获取原文并翻译 | 示例

摘要

Endoscopic ultrasonography (EUS) has shown great advantages in the diagnosis and staging of gastrointestinal malignant tumors. However, EUS based diagnosis is limited by variability in the examiner's subjective interpretation to differentiate between normal and early esophageal carcinoma. In this paper, we propose a novel approach aiming at automatic abnormal region detection from the esophageal EUS images; the contribution is three-fold: first, we present a series of preprocessing strategies developed specifically for the enhancement of EUS images to aid the estimation in the subsequent works. Second, we provide an automatic layer segmentation method based on the multiple surface graph searching approach with incorporation of geometric constraints, which is applied to segment the EUS images into five discernible layers. Third, we introduce the novel feature extraction strategy by utilizing the features from each column in the segmented layers. The SVM classifier is then applied to fulfill the normal and early esophageal carcinoma classification. Subsequently, a clustering method is used to assemble the abnormal columns together so as to detect the abnormal region. Experimental results show that our method has demonstrated its robustness even facing noisy EUS images, and has achieved high accuracy in detecting abnormal region. (C) 2018 Elsevier B.V. All rights reserved.
机译:内镜超声(EUS)在胃肠道恶性肿瘤的诊断和分期中表现出了很大的优势。然而,基于EUS基于EUS的诊断受到审查员主观解释的可变性的限制,以区分正常和早期食管癌。在本文中,我们提出了一种旨在从食道EUS图像自动异常区域检测的新方法;贡献是三倍:首先,我们提出了一系列专门用于增强EUS图像的预处理策略,以帮助在随后的作品中的估计。其次,我们提供了一种基于多表面图搜索方法的自动层分割方法,其结合了几何约束,其应用于将EUS图像分段为五个可辨别的层。第三,我们通过利用分段层中的每列的特征来介绍新颖的特征提取策略。然后施用SVM分类器以实现正常和早期食管癌分类。随后,聚类方法用于将异常列组装在一起,以便检测异常区域。实验结果表明,我们的方法甚至面临嘈杂的EUS图像的鲁棒性,并且在检测异常区域方面取得了高精度。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号