首页> 外文期刊>Neurocomputing >A low-cost and high-speed hardware implementation of spiking neural network
【24h】

A low-cost and high-speed hardware implementation of spiking neural network

机译:尖峰神经网络的低成本,高速硬件实现

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural network (SNN) is a neuromorphic system based on the information process and store procedure of biological neurons. In this paper, a low-cost and high-speed implementation for a spiking neural network based on FPGA is proposed. The LIF (Leaky-Integrate-Fire) neuron model and tempotron supervised learning rules are used to construct the SNN which can be applied to the classification of pictures. A combined circuit instead of lookup table implementation method is proposed to realize the complex computing of kernel function in LIF neuron model. In addition, this work replaces the multiplication operations in the weights training with the arithmetic shift, which can speed up the training efficiency and reduce the consumption of computing resources. Experimental results based on Vertix-7 FPGA shows that the classification accuracy is approximately 96% and the average time for classifying a sample is 0.576us at the maximum frequency 178 MHz which achieves approximately 908,578 speedup compared with the software implementation on Matlab. (C) 2019 Elsevier B.V. All rights reserved.
机译:尖峰神经网络(SNN)是基于生物神经元的信息过程和存储过程的神经形态系统。本文提出了一种基于FPGA的尖峰神经网络的低成本,高速实现。利用LIF(渗漏集成火)神经元模型和节拍器监督的学习规则来构建SNN,该SNN可应用于图片分类。提出了一种组合电路代替查找表的实现方法,以实现LIF神经元模型中核函数的复杂计算。另外,这项工作用算术移位代替了权重训练中的乘法运算,可以提高训练效率,减少计算资源的消耗。基于Vertix-7 FPGA的实验结果表明,在最大频率178 MHz上,分类精度约为96%,对样本进行分类的平均时间为0.576us,与Matlab上的软件实现相比,可实现约908,578的加速。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号