首页> 外文期刊>Neurocomputing >Meta-Learning based prototype-relation network for few-shot classification
【24h】

Meta-Learning based prototype-relation network for few-shot classification

机译:基于元学习的原型关系网络,可进行几次拍摄分类

获取原文
获取原文并翻译 | 示例

摘要

Pattern recognition has made great progress under large amount of labeled data, while performs poorly on a very few examples obtained, named few-shot classification, where a classifier can identify new classes not encountered during training. In this paper, a simple framework named Prototype-Relation Network is presented for the few-shot classification. Moreover, a novel loss function compared with prototype networks is proposed which takes both inter-class and intra-class distance into account. During meta-learning, the model is optimized by end-to-end episodes, each of which is to imitate the test few-shot setting. The trained model is used to classify new classes by computing min distance between query images and the prototype of each class. Extensive experimental results demonstrate that our proposed meta-learning model is competitive and effective, which achieves the state-of-the-art performance on Omniglot and miniImageNet datasets. (C) 2019 Elsevier B.V. All rights reserved.
机译:模式识别在大量标记数据下取得了长足的进步,而在获得的极少数例子中表现不佳,这些例子被称为“少拍分类”,分类器可以识别出训练期间未遇到的新类别。在本文中,提出了一个用于原型分类的简单框架,称为原型关系网络。此外,与原型网络相比,提出了一种新颖的损失函数,该函数同时考虑了类间距离和类内距离。在元学习期间,该模型通过端到端的情节进行优化,每个情节都模仿测试少拍设置。经过训练的模型可通过计算查询图像与每个类的原型之间的最小距离来对新类进行分类。大量的实验结果表明,我们提出的元学习模型具有竞争性和有效性,可以在Omniglot和miniImageNet数据集上达到最先进的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|224-234|共11页
  • 作者

  • 作者单位

    Shandong Univ Sch Control Sci & Engn Jinan 250061 Shandong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Few-shot learning; Classification; Meta-learning; Prototype;

    机译:快速学习;分类;元学习原型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号