首页> 外文期刊>Neurocomputing >Enriching Non-negative Matrix Factorization with Contextual Embeddings for Recommender Systems
【24h】

Enriching Non-negative Matrix Factorization with Contextual Embeddings for Recommender Systems

机译:推荐系统的上下文嵌入丰富非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Recommender Systems (RS) are used to give customized recommendations about specific items to users in a variety of applications including social web sites applications, media recommendation and commerce sites etc. Collaborative Filtering (CF) along with the Content Based Filtering (CBF) are two widely used methods which are being efficiently applied in RS implementation. CF suffers with sparseness problem where user-to-item ratings are amply sparse. On the other hand, CBF performance rely on methods of feature extraction for efficient use of items' description. The sparseness of user-to-item ratings and features extraction impede the performance of RS. Quality of rating prediction and item recommendation further degrades due to the negative values present in users/items latent factors. This paper proposes a novel RS that is built upon the semantics based items' content embedding model, enriched with contextual features extracted through Convolutional Neural Network (CNN). Non-negative Matrix Factorization (NMF), supplied with improvised embedding is used as CF technique. Embedding model captures the item details, thus resolving the sparsity, whereas, NMF caters for information loss due to negative values in latent factors. The proposed RS with contextually enriched NMF (Contx-NMF) simultaneously overcomes both the issues of sparseness and loss due to negative values, thus enhancing the rating prediction accuracy. The proposed model is evaluated on three public datasets (MovieLens 1M, MovieLens 10M)and Amazon Instant Video (AIV). The results demonstrate significant improvement in performance of Contx-NMF over state of the art RS models for sparse user-to-item ratings. (C) 2019 Elsevier B.V. All rights reserved.
机译:推荐系统(RS)用于向各种应用程序中的用户提供有关特定项目的自定义建议,包括社交网站应用程序,媒体推荐和商业站点等。协作过滤(CF)和基于内容的过滤(CBF)是两种在RS实施中有效应用的广泛使用的方法。 CF遇到稀疏问题,其中用户对项目的评级非常稀疏。另一方面,CBF性能依赖于特征提取方法来有效地使用项目描述。用户对项目评分的稀疏性和特征提取阻碍了RS的性能。由于用户/项目潜在因素中存在负值,评分预测和项目推荐的质量进一步下降。本文提出了一种新颖的RS,它基于基于语义的项目的内容嵌入模型,并丰富了通过卷积神经网络(CNN)提取的上下文特征。非负矩阵分解(NMF)(提供简易嵌入)用作CF技术。嵌入模型捕获项目的详细信息,从而解决了稀疏性,而NMF则可解决由于潜在因素中的负值而导致的信息丢失。所提出的具有上下文丰富NMF(Contx-NMF)的RS同时克服了由于负值导致的稀疏和丢失这两个问题,从而提高了评级预测的准确性。在三个公共数据集(MovieLens 1M,MovieLens 10M)和Amazon Instant Video(AIV)上评估了提出的模型。结果表明,相对于稀疏的用户到项目评级,Contx-NMF的性能明显优于现有的RS模型。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号