首页> 外文期刊>Journal of visual communication & image representation >Non-negative matrix factorization via discriminative label embedding for pattern classification
【24h】

Non-negative matrix factorization via discriminative label embedding for pattern classification

机译:通过判别标签嵌入的非负矩阵分解进行模式分类

获取原文
获取原文并翻译 | 示例

摘要

As one of the most commonly used dimension reduction approaches, discriminant non-negative matrix factorization (NMF) has been widely used for data representation in the pattern classification task. However, the previous discriminant NMFs emphasize the Fisher criterion or maximum margin criterion which has high requirement to the distribution of data. Therefore, this work proposes a discriminative label embedded NMF (LENMF) algorithm. LENMF takes into account the discriminative label embedding to obtain the low-dimensional projected data and orthogonal property of the non-negative basis to strength the ability of parts-based representation. Besides, LENMF is extended in the kernel space to explore the nonlinear relations of data. By integrating the non-negative constraint, discriminative label embedding, and the orthogonal property into the proposed objective, the multiplicative updating rules have been given in this work. Experiment results on the challenging face, object, document, and digit databases illustrate the performance of the proposed algorithm.
机译:作为最常用的降维方法之一,判别式非负矩阵分解(NMF)已被广泛用于模式分类任务中的数据表示。但是,以前的判别式NMF强调费舍尔准则或最大余量准则,这对数据的分配有很高的要求。因此,这项工作提出了一种判别性标签嵌入NMF(LENMF)算法。 LENMF考虑了区分标签的嵌入以获得低维投影数据和非负基正交特性,从而增强了基于零件的表示能力。此外,LENMF在内核空间中得到扩展,以探索数据的非线性关系。通过将非负约束,判别标签嵌入和正交属性集成到所提出的目标中,在这项工作中给出了乘法更新规则。在具有挑战性的人脸,对象,文档和数字数据库上的实验结果说明了该算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号