首页> 外文期刊>Neurocomputing >How efficient deep-learning object detectors are?
【24h】

How efficient deep-learning object detectors are?

机译:深度学习目标检测器的效率如何?

获取原文
获取原文并翻译 | 示例

摘要

Deep-learning object-detection architectures are gaining attraction, as they are used for critical tasks in relevant environments such as health, self-driving, industry, security, and robots. Notwithstanding, the available architectures provide variable performance results depending on the scenario under consideration. Challenges are usually used to evaluate such performance only in terms of accuracy. In this work, instead of proposing a new architecture, we overcome the limitations of those challenges by proposing a computationally undemanding comparative model based on several Data Envelopment Analysis (DEA) strategies, not only for the comparison of deep-learning architectures, but also to detect which parameters are the most relevant features for achieving efficiency. In addition, the proposed model provides with a set of recommendations to improve object-detection frameworks. Those measures may be applied in future high-performance meta-architectures, since this model requires lower computational and temporal requirements compared to the traditional strategy based on training neural networks - based on the trial-error method - for each configurable parameter. To this aim, the presented model evaluates 16 parameters of 139 configurations of well-known detectors present in the Google data set [1]. (C) 2019 Elsevier B.V. All rights reserved.
机译:深度学习对象检测体系结构越来越受到关注,因为它们被用于相关环境中的关键任务,例如健康,自动驾驶,工业,安全性和机器人。尽管如此,根据所考虑的方案,可用的体系结构仍会提供可变的性能结果。挑战通常仅用于评估准确性。在这项工作中,我们没有提出新的体系结构,而是通过提出一种基于几种数据包络分析(DEA)策略的计算上不需要的比较模型,从而克服了这些挑战的局限性,不仅用于深度学习体系结构的比较,而且检测哪些参数是实现效率最相关的功能。此外,所提出的模型提供了一组建议,以改进对象检测框架。这些措施可能会应用于未来的高性能元体系结构,因为与基于训练神经网络的传统策略(基于试错法)的每个可配置参数相比,该模型需要较低的计算和时间要求。为此,本文模型评估了Google数据集[1]中存在的139种著名检测器的16个参数。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号