首页> 外文期刊>Neurocomputing >Bi-Decoder Augmented Network for Neural Machine Translation
【24h】

Bi-Decoder Augmented Network for Neural Machine Translation

机译:用于神经机器翻译的双解码器增强网络

获取原文
获取原文并翻译 | 示例

摘要

Neural Machine Translation (NMT) has become a popular technology in recent years, and the encoder-decoder framework is the mainstream among all the methods. It is obvious that the quality of the semantic representations from encoding is very crucial and can significantly affect the performance of the model. However, existing unidirectional source-to-target architectures may hardly produce a language-independent representation of the text because they rely heavily on the specific relations of the given language pairs. To alleviate this problem, in this paper, we propose a novel Bi-Decoder Augmented Network (BiDAN) for the neural machine translation task. Besides the original decoder which generates the target language sequence, we add an auxiliary decoder to generate back the source language sequence at the training time. Since each decoder transforms the representations of the input text into its corresponding language, jointly training with two target ends can make the shared encoder has the potential to produce a language-independent semantic space. We conduct extensive experiments on several NMT benchmark datasets and the results demonstrate the effectiveness of our proposed approach. (C) 2020 Elsevier B.V. All rights reserved.
机译:近年来,神经机器翻译(NMT)已成为一种流行的技术,而编解码器框架是所有方法中的主流。显然,来自编码的语义表示的质量非常关键,并且可以显着影响模型的性能。但是,现有的单向从源到目标的体系结构可能很难产生与语言无关的文本表示形式,因为它们严重依赖于给定语言对的特定关系。为了缓解这个问题,在本文中,我们针对神经机器翻译任务提出了一种新型的双解码器增强网络(BiDAN)。除了生成目标语言序列的原始解码器之外,我们还添加了辅助解码器以在训练时生成源语言序列。由于每个解码器都将输入文本的表示形式转换成其相应的语言,因此与两个目标端一起进行训练可以使共享编码器具有产生独立于语言的语义空间的潜力。我们对几个NMT基准数据集进行了广泛的实验,结果证明了我们提出的方法的有效性。 (C)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|188-194|共7页
  • 作者

  • 作者单位

    Zhejiang Univ State Key Lab CAD&CG Hangzhou Peoples R China;

    Zhejiang Univ Comp Sci & Technol Hangzhou Peoples R China;

    Zhejiang Univ State Key Lab CAD&CG Hangzhou Peoples R China|Alibaba Zhejiang Univ Joint Inst Frontier Technol Hangzhou Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Neural Machine Translation; Bi-decoder; Denoising; Reinforcement learning;

    机译:神经机器翻译;双解码器去噪;强化学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号