首页> 外文期刊>Neurocomputing >Robust approximations of low-rank minimization for tensor completion
【24h】

Robust approximations of low-rank minimization for tensor completion

机译:张量完成的低秩最小鲁棒逼近

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the nuclear norm of tensors and nonconvex approximations of matrix rank, we propose three robust approximations of multi-linear rank for tensor completion. For each method, we develop an efficient algorithm to solve the corresponding optimization problem. Besides, we prove that every cluster point of the sequence, generated by the respective algorithm, is a stationary point. To obtain a more robust reconstruction, we design an updating rule of parameters for each method. Our empirical experiments on real-world data show that the proposed methods deliver state-of-the-art performance in the reconstruction of low-rank tensors. (C) 2019 Elsevier B.V. All rights reserved.
机译:受张量核规范和矩阵秩的非凸近似的启发,我们提出了三线性阶数的鲁棒近似来完成张量。对于每种方法,我们都开发了一种有效的算法来解决相应的优化问题。此外,我们证明了由相应算法生成的序列的每个聚类点都是固定点。为了获得更鲁棒的重构,我们为每种方法设计了一个参数更新规则。我们在现实世界数据上的经验实验表明,所提出的方法在重构低秩张量方面具有最先进的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号