首页> 外文期刊>Neurocomputing >Beyond EM: A faster Bayesian linear regression algorithm without matrix inversions
【24h】

Beyond EM: A faster Bayesian linear regression algorithm without matrix inversions

机译:超越EM:一种更快的贝叶斯线性回归算法,无需矩阵求逆

获取原文
获取原文并翻译 | 示例

摘要

The Bayesian linear regression is a useful tool for many scientific communities. This paper presents a novel algorithm for solving the Bayesian linear regression problem with Gaussian priors, which shares the same spirit as the gradient based methods. In addition, the standard scheme for this task, the Expectation Maximization (EM) algorithm, involves matrix inversions but our proposed algorithm is free of. Numerical experiments demonstrate that the proposed algorithm performs as well as the gradient based and EM algorithms in term of precision, but runs significantly faster than the gradient based and EM algorithms. Due to its matrix-inversion-free nature, the algorithm of this paper is a viable alternative to the competing methods available in the literature. (C) 2019 Elsevier B.V. All rights reserved.
机译:贝叶斯线性回归是许多科学界的有用工具。本文提出了一种新的算法来解决高斯先验贝叶斯线性回归问题,与基于梯度的方法具有相同的精神。另外,用于此任务的标准方案,期望最大化(EM)算法,涉及矩阵求逆,但我们提出的算法是免费的。数值实验表明,提出的算法在精度上与基于梯度的算法和EM算法一样好,但是比基于梯度的算法和EM算法运行快得多。由于其无矩阵求逆的性质,本文算法是文献中可用竞争方法的可行替代方案。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号