首页> 外文期刊>Neurocomputing >Hybrid fuzzy control for the goethite process in zinc production plant combining type-1 and type-2 fuzzy logics
【24h】

Hybrid fuzzy control for the goethite process in zinc production plant combining type-1 and type-2 fuzzy logics

机译:结合类型1和类型2模糊逻辑的锌生产厂针铁矿过程的混合模糊控制

获取原文
获取原文并翻译 | 示例

摘要

The goethite process is a complicated reaction system which holds a significant position in zinc hydrometallurgy process. It exhibits nonlinear behavior and time-delay nature because of the chemical reactions. To achieve the stable and real-time control performance, a hybrid fuzzy control strategy integrating a type-1 and a type-2 fuzzy logic controllers is proposed in this paper. According to the on-line measured pH, the type-1 fuzzy controller (TI FLC) via the Takagi-Sugeno fuzzy control is employed to control the zinc oxide additive rate. A parameter tuning method that does not require the system model is designed for the T1 FLC. Because the ferrous ion concentration cannot be measured on-line, the interval type-2 fuzzy logic controller (IT2 FLC) is utilized to control the oxygen flow rate. According to the feedback information, gradient descent algorithm is used to update the parameters in the IT2 FLC. Because of the unknown system structure, gradient descent information is estimated by the simultaneous perturbation stochastic approximation. Finally, simulations are conducted using the practical production data. The simulation results show the effectiveness of the proposed strategy. The hybrid fuzzy control strategy improves the control performance of the goethite process, compared with PID controller. (C) 2019 Elsevier B.V. All rights reserved.
机译:针铁矿工艺是一个复杂的反应系统,在锌湿法冶金工艺中占有重要地位。由于化学反应,它表现出非线性行为和时延性质。为了实现稳定和实时的控制性能,提出了一种混合模糊控制策略,该策略集成了类型1和类型2的模糊逻辑控制器。根据在线测量的pH值,通过Takagi-Sugeno模糊控制使用1型模糊控制器(TI FLC)来控制氧化锌的添加量。 T1 FLC设计了不需要系统模型的参数调整方法。由于无法在线测量亚铁离子浓度,因此使用间隔2型模糊逻辑控制器(IT2 FLC)来控制氧气流速。根据反馈信息,使用梯度下降算法更新IT2 FLC中的参数。由于系统结构未知,因此通过同时扰动随机逼近来估计梯度下降信息。最后,使用实际生产数据进行模拟。仿真结果表明了所提策略的有效性。与PID控制器相比,混合模糊控制策略提高了针铁矿过程的控制性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号