首页> 外文期刊>Neurocomputing >Quadruplet-based deep hashing for image retrieval
【24h】

Quadruplet-based deep hashing for image retrieval

机译:基于四元组的深度哈希用于图像检索

获取原文
获取原文并翻译 | 示例

摘要

Hashing methods have been widely used for large-scale image retrieval. Learning deep hashing networks with a pairwise loss or a triplet ranking loss has become a common framework. The pairwise loss and triplet ranking loss, respectively, focus on preserving the pairwise similarity and the relative similarity ordering. In this paper, we design a quadruplet loss that can fully explore the similarity relation between image pairs to decrease the intraclass variation and increase the interclass variation. Moreover, we propose a deep architecture based on quadruplet loss and optimal adaptive margins for learning hash codes. Extensive experimental results show that our method achieves state-of-the-art performance on several benchmark image retrieval datasets. (C) 2019 Published by Elsevier B.V.
机译:散列方法已被广泛用于大规模图像检索。学习具有成对丢失或三元组排序丢失的深度哈希网络已成为常见的框架。成对丢失和三元组排序丢失分别专注于保持成对相似性和相对相似性排序。在本文中,我们设计了一个四元组损失,可以充分探索图像对之间的相似关系,以减少类内差异并增加类间差异。此外,我们提出了一种基于四元组损失和最佳自适应余量的深度架构,用于学习哈希码。大量的实验结果表明,我们的方法在几个基准图像检索数据集上均达到了最先进的性能。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2019年第13期|161-169|共9页
  • 作者单位

    Natl Police Univ Criminal Justice Dept Informat Management Shenyang Liaoning Peoples R China;

    Tangshan Normal Univ Dept Comp Sci Tangshan Peoples R China;

    Shen Zhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China;

    Hebei Univ Coll Management Baoding Hebei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Quadruplet; Adaptive margin; Object representation; Hashing learning; Image retrieval;

    机译:四胞胎;自适应余量;对象表示;哈希学习;图像检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号