首页> 外文期刊>Neurocomputing >A fast online spherical hashing method based on data sampling for large scale image retrieval
【24h】

A fast online spherical hashing method based on data sampling for large scale image retrieval

机译:基于数据采样的快速在线球形哈希算法用于大规模图像检索

获取原文
获取原文并翻译 | 示例

摘要

Hashing methods are used to perform the approximate nearest neighbor search due to the low storage for binary codes and the fast computation of Hamming distance. However, in most of the hashing methods, the learning process of hash functions has high cost in both time and storage. To overcome this issue, in this paper, a fast online unsupervised hashing method based on data sampling is proposed to learn the hypersphere-based hash functions from the streaming data. By maintaining a small-size data sample to efficiently preserve the properties of the streaming data, the hypersphere-based hash functions are learnt in an online fashion from the data sample and we can justify the hash functions by proving their theoretic properties. To further improve the search accuracy of our method, a new dimensionality reduction algorithm is proposed to learn the projection matrix from the data sample to construct a low-dimensional space. Then, the data sample is projected into the low-dimensional space, and our method can learn the hash functions online from the small-size projected data sample with low computational complexity and storage space. The experiments show that our method has a better search accuracy than other online hashing methods and runs faster in learning the hash functions. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于二进制代码的存储量低以及汉明距离的快速计算,使用散列方法来执行近似最近邻居搜索。但是,在大多数散列方法中,散列函数的学习过程在时间和存储上都有很高的成本。为了克服这个问题,本文提出了一种基于数据采样的快速在线无监督哈希算法,以从流数据中学习基于超球形的哈希函数。通过维护一个小型数据样本以有效地保留流数据的属性,可以从数据样本中以在线方式学习基于超球形的哈希函数,并且我们可以通过证明其理论性质来证明哈希函数的合理性。为了进一步提高我们方法的搜索精度,提出了一种新的降维算法,从数据样本中学习投影矩阵,构建低维空间。然后,将数据样本投影到低维空间中,并且我们的方法可以从计算量和存储空间低的小型投影数据样本中在线学习哈希函数。实验表明,与其他在线哈希算法相比,我们的方法具有更好的搜索精度,并且在学习哈希函数方面运行得更快。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号