首页> 外文期刊>Neurocomputing >Long short-term memory neural network based fault detection and isolation for electro-mechanical actuators
【24h】

Long short-term memory neural network based fault detection and isolation for electro-mechanical actuators

机译:基于长短期记忆神经网络的机电执行器故障检测与隔离

获取原文
获取原文并翻译 | 示例

摘要

In the new generation of aircraft, electro-mechanical actuators (EMA) have been replacing the conventional hydraulic versions. Despite the fact that a failure of this system can seriously affect the safety of vehicles and their operators, there are few studies that focus on fault diagnosis for the units. In this paper, we present an innovative fault detection and isolation method for the EMA. Our method is tested and verified against three types of failures. This novel fault diagnosis method works by creating a model for sensor data by using the known time series. It utilizes an advanced Long Short-term Memory (LSTM) neural network, which can effectively handle time series data in this domain. A modification to the LSTM network is applied in order to take advantage of the correlation between sensors. In addition, the algorithm uses a sliding window to improve performance of LSTM applied to fault isolation. Our research has revealed that the proposed algorithm is better able to detect faults when compared to traditional neural networks. We also compare our performance with the support vector machine algorithm and the typical LSTM algorithm. Ultimately, the proposed method performs superiorly for the task of fault isolation. (C) 2019 Elsevier B.V. All rights reserved.
机译:在新一代飞机中,机电执行器(EMA)已取代了传统的液压版本。尽管该系统的故障会严重影响车辆及其操作人员的安全,但很少有研究针对这些单元的故障诊断。在本文中,我们提出了一种创新的EMA故障检测和隔离方法。我们的方法针对三种类型的故障进行了测试和验证。这种新颖的故障诊断方法通过使用已知时间序列为传感器数据创建模型来工作。它利用先进的长短期记忆(LSTM)神经网络,可以有效地处理此域中的时间序列数据。为了利用传感器之间的相关性,对LSTM网络进行了修改。另外,该算法使用滑动窗口来提高应用于故障隔离的LSTM的性能。我们的研究表明,与传统的神经网络相比,该算法能够更好地检测故障。我们还将性能与支持向量机算法和典型LSTM算法进行比较。最终,所提出的方法在故障隔离方面表现出优越的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号