首页> 外文期刊>IEEE Transactions on Neural Networks >A Recurrent Neural-Network-Based Sensor and Actuator Fault Detection and Isolation for Nonlinear Systems With Application to the Satellite's Attitude Control Subsystem
【24h】

A Recurrent Neural-Network-Based Sensor and Actuator Fault Detection and Isolation for Nonlinear Systems With Application to the Satellite's Attitude Control Subsystem

机译:基于递归神经网络的非线性系统传感器和执行器故障检测与隔离及其在卫星姿态控制子系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.
机译:本文提出了一种稳健的故障检测和隔离(FDI)方案,该方案使用基于神经网络的观察器策略来处理一类通用的非线性系统。执行器和传感器故障均被考虑。所考虑的非线性系统受状态和传感器不确定性以及干扰的影响。两个递归神经网络分别用于识别一般未知的执行器和传感器故障。神经网络权重根据修改的反向传播方案进行更新。与文献中开发的许多先前方法不同,我们提出的FDI方案不依赖于全状态测量的可用性。通过使用李雅普诺夫的直接方法,可以证明在存在未知传感器和执行器故障以及工厂和传感器噪声以及不确定性的情况下,整个FDI方案的稳定性。开发的稳定性分析不需要对系统和/或FDI算法进行限制性假设。在我们的案例研究中,考虑了在低地球轨道(LEO)卫星的姿态控制子系统(ACS)中常用的磁矩型执行器和磁强计型传感器。通过广泛的仿真研究证明并验证了我们提出的故障诊断策略的有效性和功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号