首页> 外文期刊>Neurocomputing >Nash equilibrium computation in two-network zero-sum games: An incremental algorithm
【24h】

Nash equilibrium computation in two-network zero-sum games: An incremental algorithm

机译:两网零和博弈中的纳什均衡计算:一种增量算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of distributed Nash equilibrium computation in two-network zero-sum games is studied. Based on a sequential communication strategy, a novel incremental algorithm is developed to compute a Nash equilibrium. Different from the existing algorithms, the agents in two different subnet-works perform their updates in an asynchronous way, and the square-summable assumption of step sizes adopted in the existing methods is removed in our algorithm. In the convergence analysis of the proposed algorithm, two important relations of the agents' equilibrium estimates are firstly provided based on the properties of projection operator. Then by combining the methods of contradiction and mathematical induction, it is proven that the agents' estimates achieve a Nash equilibrium even without the square-summable requirement of step sizes. Finally, simulations are provided to verify the validity of our method. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文研究了两网络零和博弈中的分布式纳什均衡计算问题。基于顺序通信策略,开发了一种新颖的增量算法来计算纳什均衡。与现有算法不同,两个不同子网中的代理以异步方式执行其更新,并且在我们的算法中删除了现有方法中采用的步长平方和假设。在该算法的收敛性分析中,首先根据投影算子的性质,给出了主体均衡估计的两个重要关系。然后,通过将矛盾和数学归纳相结合的方法,证明了即使没有步长的平方和要求,Agent的估计也能达到纳什均衡。最后,提供仿真以验证我们方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号