首页> 外文期刊>Neurocomputing >Novel functional brain network methods based on CNN with an application in proficiency evaluation
【24h】

Novel functional brain network methods based on CNN with an application in proficiency evaluation

机译:基于CNN的功能神经网络新方法及其在能力评估中的应用

获取原文
获取原文并翻译 | 示例

摘要

With the advancements in the research about the EEG signal processing, there are a large number of different analytical methods include the functional brain network (FBN) methods, most of them are unsupervised and need multi handcrafted steps until classification. It is expected to propose a general-purpose method based on deep learning methods to improve the situation. Therefore, in this paper, we proposed two methods based on the convolutional neural network (CNN). One was analyzing adjacent matrixes computed by the phase locking value (PLV) to generate features based on CNN, which was equivalent to the graph-theoretic (GT) indexes functionally. The other method was a novel end-to-end method, brain connection based on CNN (BCCNN), which used a factorized 1-D CNN to filter the temporal part of the raw EEG, computed the correlation coefficients among the electrodes to build a new kind of FBNs and then extracted features from the FBNs like the last method. Then we performed a working memory (WM) experiment to verify the validity of the two methods. Those methods were used to detect the proficiency of the subjects in a WM task. In the results, the accuracy of the first method was 99.33%, which was as good as that of the GT indexes (99.35%). The accuracy of the second methods was 96.53%, which was lower than the performance of the PLV but higher than that of two conventional CNNs (94.37%, 90.83%). (C) 2019 Elsevier B.V. All rights reserved.
机译:随着脑电信号处理研究的不断发展,有许多不同的分析方法,包括功能脑网络(FBN)方法,其中大多数是无人监督的,需要多个手工步骤进行分类。期望提出一种基于深度学习方法的通用方法来改善这种情况。因此,本文提出了两种基于卷积神经网络(CNN)的方法。一种方法是分析由锁相值(PLV)计算的相邻矩阵,以基于CNN生成特征,该特征在功能上等效于图论(GT)索引。另一种方法是一种新颖的端到端方法,即基于CNN(BCCNN)的大脑连接,该方法使用分解的一维CNN过滤原始EEG的时间部分,计算电极之间的相关系数以建立一个新型FBN,然后像上一种方法一样从FBN中提取特征。然后,我们进行了工作记忆(WM)实验,以验证这两种方法的有效性。这些方法用于检测对象在WM任务中的熟练程度。结果表明,第一种方法的准确性为99.33%,与GT指数的准确性(99.35%)相同。第二种方法的准确性为96.53%,低于PLV的性能,但高于两个常规CNN的准确性(94.37%,90.83%)。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|153-162|共10页
  • 作者单位

    Northeastern Univ, Dept Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China;

    Northeastern Univ, Dept Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China;

    Northeastern Univ, Dept Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China;

    Northeastern Univ, Dept Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China;

    Northeastern Univ, Dept Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China;

    Northeastern Univ, Dept Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electroencephalograph (EEG); Functional brain network (FBN); Convolutional neural network (CNN); End-to-end; General-purpose;

    机译:脑电图(EEG);功能性脑网络(FBN);卷积神经网络(CNN);端到端;通用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号