首页> 外文期刊>Neurocomputing >DR~2-Net: Deep Residual Reconstruction Network for image compressive sensing
【24h】

DR~2-Net: Deep Residual Reconstruction Network for image compressive sensing

机译:DR〜2-Net:用于图像压缩感测的深度残差重建网络

获取原文
获取原文并翻译 | 示例

摘要

Most traditional algorithms for compressive sensing image reconstruction suffer from the intensive computation. Recently, deep learning-based reconstruction algorithms have been reported, which dramatically reduce the time complexity than iterative reconstruction algorithms. In this paper, we propose a novel Deep Residual Reconstruction Network (DR2-Net) to reconstruct the image from its Compressively Sensed (CS) measurement. The DR2-Net is proposed based on two observations: (1) linear mapping could reconstruct a high-quality preliminary image, and (2) residual learning could further improve the reconstruction quality. Accordingly, DR2-Net consists of two components, i.e., linear mapping network and residual network, respectively. Specifically, the fully-connected layer in neural network implements the linear mapping network. We then expand the linear mapping network to DR2-Net by adding several residual learning blocks to enhance the preliminary image. Extensive experiments demonstrate that the DR2 -Net outperforms traditional iterative methods and recent deep learning-based methods by large margins at measurement rates 0.01, 0.04, 0.1, and 0.25, respectively. The code of DR 2 -Net has been released on: https://github.com/coldrainyht/caffe_dr2. (C) 2019 Elsevier B.V. All rights reserved.
机译:用于压缩感测图像重建的大多数传统算法遭受密集计算的困扰。最近,已经报道了基于深度学习的重建算法,它比迭代重建算法大大降低了时间复杂度。在本文中,我们提出了一种新颖的深度残差重建网络(DR2-Net),以通过其压缩感知(CS)测量来重建图像。 DR2-Net是基于两个观察结果而提出的:(1)线性映射可以重建高质量的初始图像,(2)残差学习可以进一步提高重建质量。因此,DR2-Net由两个部分组成,分别是线性映射网络和残差网络。具体来说,神经网络中的全连接层实现了线性映射网络。然后,我们通过添加一些剩余的学习块来增强线性映像网络,以将DR2-Net扩展到DR2-Net。大量实验表明,DR2-Net在测量速率分别为0.01、0.04、0.1和0.25时,以较大的幅度优于传统的迭代方法和最近的基于深度学习的方法。 DR 2 -Net的代码已发布在:https://github.com/coldrainyht/caffe_dr2。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|483-493|共11页
  • 作者单位

    Inst Automat CAS, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China;

    Inst Comp Technol CAS, Beijing 100190, Peoples R China;

    Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China;

    Univ Sci & Technol China, Natl Engn Lab Brain Inspired Intelligence Technol, Hefei 230026, Anhui, Peoples R China;

    Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA;

    Inst Automat CAS, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image compressive sensing; DR2-Net; Convolutional neural networks;

    机译:图像压缩感应;DR2-NET;卷积神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号