首页> 外文期刊>Neurocomputing >Sparse L1-norm two dimensional linear discriminant analysis via the generalized elastic net regularization
【24h】

Sparse L1-norm two dimensional linear discriminant analysis via the generalized elastic net regularization

机译:基于广义弹性网正则化的稀疏L1-范数二维线性判别分析

获取原文
获取原文并翻译 | 示例

摘要

Linear discriminant analysis (LDA) and two dimensional LDA (2DLDA) are widely applied methods for dimensionality reduction. However, both of them lack of robustness and sparseness. Recent studies show that the elastic net and the L1-norm would improve the learning ability of dimensionality reduction. In this paper, we propose a generalized elastic net and apply it into the L1-norm based LDA and 2DLDA to extend LDA and 2DLDA with robustness and sparseness simultaneously (named LDAL1-S and 2DLDAL1-S, respectively). The generalized elastic net also helps LDAL1-S and 2DLDAL1-S avoiding the singularity problem. Moreover, the Lp-norm (0 p = 1) is used in the generalized elastic net, which makes LDAL1-S and 2DLDAL1-S realize the desired sparseness of the discriminant vectors by selecting proper p. Both LDAL1-S and 2DLDAL1-S are solved through a series of convex problems with equality constraints, with a closed solution for each single problem. Experimental results on three contaminated human face databases show the effectiveness of the proposed methods. (c) 2019 Elsevier B.V. All rights reserved.
机译:线性判别分析(LDA)和二维LDA(2DLDA)是减少维数的广泛应用方法。但是,它们都缺乏鲁棒性和稀疏性。最近的研究表明,弹性网和L1范数将提高降维的学习能力。在本文中,我们提出了一种广义弹性网,并将其应用于基于L1范数的LDA和2DLDA,以同时扩展具有鲁棒性和稀疏性的LDA和2DLDA(分别命名为LDAL1-S和2DLDAL1-S)。广义弹性网还有助于LDAL1-S和2DLDAL1-S避免奇点问题。此外,在广义弹性网中使用Lp范数(0 <= 1),这使得LDAL1-S和2DLDAL1-S通过选择适当的p来实现判别向量的期望稀疏性。 LDAL1-S和2DLDAL1-S都是通过一系列具有等式约束的凸问题来解决的,每个问题都具有一个封闭的解决方案。在三个受污染的人脸数据库上的实验结果表明了所提方法的有效性。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号