首页> 外文期刊>Neurocomputing >Exponential synchronization of inertial neural networks with mixed time-varying delays via periodically intermittent control
【24h】

Exponential synchronization of inertial neural networks with mixed time-varying delays via periodically intermittent control

机译:时滞混合的时滞混合惯性神经网络的指数同步

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the problem on the exponential synchronization of inertial neural networks with discrete and finite distributed time-varying delays using intermittent control. Two kinds of time varying delays are considered: one is whose derivatives are strictly smaller than one and the other is without any restriction on the delay derivatives. Based on Lyapunov-Krasovskii functional method and applying inequality techniques, some new delay-dependent criteria are obtained to ensure the global exponential synchronization for the discussed networks, which are very simple to implement in practice and reduce the computational burden. Moreover, the exponential synchronization convergence rates depend on the norm, the transformation parameters, the control parameters and the width index of the control. Finally, some numerical examples are presented to demonstrate the validity of our results. (c) 2019 Elsevier B.V. All rights reserved.
机译:本文涉及具有间歇和有限分布时变时滞的惯性神经网络的间歇控制的指数同步问题。考虑两种时变延迟:一种延迟的导数严格小于一种,另一种对延迟的导数没有任何限制。基于Lyapunov-Krasovskii泛函方法并应用不等式技术,获得了一些新的时延相关准则,以确保所讨论网络的全局指数同步,在实践中非常容易实现,并减轻了计算负担。此外,指数同步收敛速度取决于规范,变换参数,控制参数和控件的宽度指标。最后,通过一些数值例子说明了我们的结果的有效性。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号