首页> 外文期刊>Neurocomputing >Adaptive entropy-based learning with dynamic artificial neural network
【24h】

Adaptive entropy-based learning with dynamic artificial neural network

机译:基于动态神经网络的自适应熵学习

获取原文
获取原文并翻译 | 示例

摘要

Entropy models the added information associated to data uncertainty, proving that stochasticity is not purely random. This paper explores the potential improvement of machine learning methodologies through the incorporation of entropy analysis in the learning process. A multi-layer perceptron is applied to identify patterns in previous forecasting errors achieved by a machine learning methodology. The proposed learning approach is adaptive to the training data through a re-training process that includes only the most recent and relevant data, thus excluding misleading information from the training process. The learnt error patterns are then combined with the original forecasting results in order to improve forecasting accuracy, using the Renyi entropy to determine the amount in which the original forecasted value should be adapted considering the learnt error patterns. The proposed approach is combined with eleven different machine learning methodologies, and applied to the forecasting of electricity market prices using real data from the Iberian electricity market operator - OMIE. Results show that through the identification of patterns in the forecasting error, the proposed methodology is able to improve the learning algorithms' forecasting accuracy and reduce the variability of their forecasting errors. (C) 2019 Elsevier B.V. All rights reserved.
机译:熵对与数据不确定性相关的附加信息进行建模,证明随机性并非纯粹是随机的。本文通过在学习过程中纳入熵分析来探索机器学习方法的潜在改进。多层感知器用于识别机器学习方法所达到的先前预测错误中的模式。所提出的学习方法通​​过仅包含最新和相关数据的重新训练过程来适应训练数据,从而从训练过程中排除误导性信息。然后,将学习到的错误模式与原始预测结果进行组合,以提高预测准确性,并使用Renyi熵确定要考虑到学习到的错误模式的原始预测值的调整量。所提出的方法与11种不同的机器学习方法相结合,并使用来自伊比利亚电力市场运营商OMIE的真实数据应用于电力市场价格的预测。结果表明,通过识别预测误差中的模式,该方法能够提高学习算法的预测精度,并减少其预测误差的可变性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号