首页> 外文期刊>Neurocomputing >Boolean kernels for rule based interpretation of support vector machines
【24h】

Boolean kernels for rule based interpretation of support vector machines

机译:布尔核,用于基于规则的支持向量机解释

获取原文
获取原文并翻译 | 示例

摘要

Machine learning started as an academic-oriented domain, but nowadays it is becoming more and more widespread across diverse domains, such as retail, healthcare, finance, and many more. This non-academic face of machine learning creates a new set of challenges. The usage of such complex methods by nonexpert users has increased the need for interpretable models. To this end, in this paper we propose an approach for extracting explanation rules from support vector machines. The core idea is based on using kernels with feature spaces composed by logical propositions. On top of that, a searching algorithm tries to retrieve the most relevant features/rules that can be used to explain the trained model. Experiments on both categorical and real-valued datasets show the effectiveness of the proposed approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:机器学习最初是一个面向学术的领域,但是如今,它在零售,医疗保健,金融等不同领域中变得越来越普遍。机器学习的这种非学术面带来了一系列新挑战。非专业用户对这种复杂方法的使用增加了对可解释模型的需求。为此,本文提出了一种从支持向量机中提取解释规则的方法。核心思想是基于使用具有由逻辑命题组成的特征空间的内核。最重要的是,搜索算法会尝试检索可用于解释训练模型的最相关特征/规则。在分类数据集和实值数据集上的实验表明了该方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号