首页> 外文期刊>Neurocomputing >State estimation for neural networks with Markov-based nonuniform sampling: The partly unknown transition probability case
【24h】

State estimation for neural networks with Markov-based nonuniform sampling: The partly unknown transition probability case

机译:基于Markov非均匀采样的神经网络状态估计:部分未知的转移概率情况

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the state estimation problem is investigated for a class of discrete-time delayed neural networks. The measurements, before they are received by the state estimator, are sampled and the sampling process is modeled by a Markov chain. In order to cater for more practical engineering, the transition probabilities of the Markov chain are considered to be partially available. A mode-dependent full-order state estimator is constructed and a sufficient condition is obtained under which the estimation error dynamics is exponentially ultimately bounded in the mean square. Meanwhile, an ultimate bound of the estimation error is estimated by seeking a root of an elementary equation. Subsequently, the desired estimators are designed in terms of the solution to a set of linear matrix inequalities. Finally, a numerical simulation example is presented and the desired estimator parameters are solved by using the Matlab toolboxes. The simulation illustrates the effectiveness of the proposed state estimation scheme. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文研究了一类离散时间延迟神经网络的状态估计问题。在状态估计器接收到测量值之前,先对它们进行采样,然后通过马尔可夫链对采样过程进行建模。为了迎合更实际的工程,马尔可夫链的转移概率被认为是部分可用的。构造了一个与模式有关的全阶状态估计器,并获得了充分的条件,在这种条件下,估计误差动态指数均最终限制在均方中。同时,通过寻找基本方程的根来估计估计误差的极限。随后,根据对一组线性矩阵不等式的解,设计所需的估计量。最后,给出了一个数值仿真示例,并使用Matlab工具箱求解了所需的估计器参数。仿真说明了所提出的状态估计方案的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第10期|261-270|共10页
  • 作者

    Liu Yufei; Shen Bo; Li Qi;

  • 作者单位

    Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China|Minist Educ, Engn Res Ctr Digitalized Text & Fash Technol, Shanghai 201620, Peoples R China;

    Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China|Minist Educ, Engn Res Ctr Digitalized Text & Fash Technol, Shanghai 201620, Peoples R China;

    Hangzhou Normal Univ, Inst Serv Engn, Hangzhou 311121, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discrete-time neural networks; Exponentially ultimately bounded; Markov chain; Nonuniform sampling; Partly unknown transition probabilities;

    机译:离散时间神经网络;指数最终有界;马尔可夫链;非均匀采样;部分未知的转移概率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号