首页> 外文期刊>Neurocomputing >Structured graph regularized shape prior and cross-entropy induced active contour model for myocardium segmentation in CTA images
【24h】

Structured graph regularized shape prior and cross-entropy induced active contour model for myocardium segmentation in CTA images

机译:CTA图像中用于心肌分割的结构化图正则化形状先验和交叉熵诱发的主动轮廓模型

获取原文
获取原文并翻译 | 示例

摘要

Accurate segmentation of myocardium tissue from computed tomography angiography (CTA) images is a crucial step in development of cardiac clinical applications. Automatic methods are highly desirable to release the burden of manual delineation, however, it is challenging due to the presence of images with intensity non-uniformity and coarse, weak and even pseudo boundary. To this end, a new geometric active contour (GAC) model that integrates high-level shape prior and low-level local intensity statistics is proposed. First, the cardiac-type specific shape prior is learned by structured graph-regularized principal component analysis, so that allows to be faithful to the shape of the desired myocardium. Second, local intensity distribution with inhomogeneity is modeled by cross-entropy energy functional and segmentation-oriented image decomposition. Third, the proposed model is solved as variational level set formulation and a distance regularized energy functional is also incorporated for the stability of numerical computation. The model was evaluated on a set of cardiac CTA images with comparison to related shape prior and local region-based methods and multi-atlas joint label fusion methods, and experimental results show it achieves competitive accuracies of segmenting myocardial epicardium and endocardium parts. It also presents advantage of computational burden in comparison to some popular methods such as multi-atlas joint label fusion. Since the framework of proposed method is general and adaptive, it could be potentially extended to segment similar objects in CT images. (C) 2019 Elsevier B.V. All rights reserved.
机译:从计算机断层扫描血管造影(CTA)图像准确分割心肌组织是开发心脏临床应用的关键步骤。非常需要自动方法来释放手动描绘的负担,但是,由于存在强度不均匀且具有粗糙,较弱甚至伪边界的图像,因此具有挑战性。为此,提出了一种新的几何活动轮廓线(GAC)模型,该模型将高级形状先验和低级局部强度统计信息相结合。首先,通过结构图正则化主成分分析获知心脏类型的特定形状先验,从而可以忠实于所需心肌的形状。其次,通过交叉熵能量函数和面向分割的图像分解对具有不均匀性的局部强度分布进行建模。第三,将所提出的模型作为变分水平集公式进行求解,并且还纳入了距离正则化能量函数以提高数值计算的稳定性。该模型在一组心脏CTA图像上进行了评估,并与相关的基于形状和局部区域的先前方法以及多图谱联合标签融合方法进行了比较,实验结果表明,该模型在分割心肌外膜和心内膜部位方面具有竞争优势。与某些流行的方法(如多图谱联合标签融合)相比,它还具有计算负担的优势。由于所提出的方法的框架是通用且自适应的,因此可以潜在地扩展以分割CT图像中的相似对象。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第10期|215-230|共16页
  • 作者

    Niu Yanmin; Qin Lan; Wang Xuchu;

  • 作者单位

    Chongqing Univ, Coll Optoelect Engn, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China|Chongqing Normal Univ, Coll Comp & Informat Sci, Chongqing 400050, Peoples R China;

    Chongqing Univ, Coll Optoelect Engn, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China;

    Chongqing Univ, Coll Optoelect Engn, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active contours; Level set evolution; Shape prior; Cross-entropy; Myocardium segmentation; Computed tomography angiography (CTA) images;

    机译:活动轮廓;水平集演变;形状先验;交叉熵;心肌分割;计算机断层摄影血管造影(CTA)图像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号