首页> 外文期刊>Neurocomputing >Low-resolution palmprint image denoising by generative adversarial networks
【24h】

Low-resolution palmprint image denoising by generative adversarial networks

机译:生成对抗网络的低分辨率掌纹图像去噪

获取原文
获取原文并翻译 | 示例

摘要

Palmprint recognition is a reliable biometric identification method because palmprints contain rich and discriminative features. Low-resolution palmprints have attracted much attention due to their simple acquisition and low computational cost. Many previous works have achieved impressive results. However, we noticed that the performances of these methods declined significantly when there was noise in the palmprint images. Traditional denoising algorithms cannot address multiple types of noise in palmprint images and destroy the orientation information, which is of vital importance for recognition. In this paper, we propose a generative adversarial network (GAN)-based model to cope with this problem. This model is an effective denoising method for low-resolution palmprint images that can handle multiple types of noise and reserve more orientation information. The comparative experimental results demonstrate that our model has reached the status of state-of-the-art image inpainting algorithms with accurate masks. The EER (equal error rate) of the palmprint matching decreased from 10.841% to 1.532% after denoising. Moreover, our method is end-to-end and does not require the additional location information of noise. (C) 2019 Elsevier B.V. All rights reserved.
机译:掌纹识别是一种可靠的生物特征识别方法,因为掌纹包含丰富且有区别的功能。低分辨率掌纹由于其简单的采集和较低的计算成本而备受关注。以前的许多作品都取得了令人瞩目的成果。但是,我们注意到当掌纹图像中出现噪声时,这些方法的性能会大大下降。传统的降噪算法无法处理掌纹图像中的多种类型的噪声并破坏方向信息,这对于识别至关重要。在本文中,我们提出了一种基于生成对抗网络(GAN)的模型来解决此问题。该模型是一种适用于低分辨率掌纹图像的有效降噪方法,该掌纹图像可以处理多种类型的噪声并保留更多方向信息。对比实验结果表明,我们的模型已达到具有精确蒙版的最新图像修复算法的状态。经去噪后,掌纹匹配的EER(均错误率)从10.841%降低至1.532%。而且,我们的方法是端到端的,不需要额外的噪声位置信息。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第17期|275-284|共10页
  • 作者单位

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen, Peoples R China;

    ShenZhen OEASY Ltd Co, Innovat Lab, Shenzhen, Peoples R China;

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen, Peoples R China;

    Xidian Univ, Elect Informat Engn, Xian, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low-resolution palmprint; palmprint denoising; GAN;

    机译:低分辨率掌纹;掌纹去噪;GAN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号