首页> 外文期刊>Neurocomputing >A novel extreme learning Machine-based Hammerstein-Wiener model for complex nonlinear industrial processes
【24h】

A novel extreme learning Machine-based Hammerstein-Wiener model for complex nonlinear industrial processes

机译:基于复杂机器非线性工业过程的基于极端学习机的新型Hammerstein-Wiener模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel extreme learning machine (ELM) based Hammerstein-Wiener model is developed for the approximation of complex nonlinear systems. The proposed model has two static ELM networks surround a dynamic linear part. Estimation of this model can be summarized into the following three aspects: The first one is to approximate the static nonlinear elements of Hammerstein-Wiener model with two independent ELM networks, which are single-hidden layer feedforward network (SLFN) essentially. The second one is to estimate the structure of linear part of the proposed model using lipschitz quotient criterion with respect to the measurements. The final one is to determine the parameters of the two SLFNs and the linear block using ELM algorithm. To evaluate the generalization performance, Rademacher complexity will be used to give the generalization bound of the proposed model with theoretical proof. The proposed model can track and handle the strong nonlinearity and time-varying dynamics over the whole operating domain for its inherent two nonlinear structure. Furthermore, with ELM algorithms, the proposed model can achieve fast learning speed and less computation complexity. Simulations on two typical industrial thermal processes demonstrate the accuracy and efficiency of the researched model. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,开发了一种基于Hammerstein-Wiener模型的新型极限学习机(ELM),用于逼近复杂的非线性系统。提出的模型有两个静态ELM网络围绕一个动态线性部分。该模型的估计可以概括为以下三个方面:第一个方面是使用两个独立的ELM网络(实质上是单层前馈网络(SLFN))来近似Hammerstein-Wiener模型的静态非线性元素。第二个是使用关于测量的lipschitz商标准来估计所提出模型的线性部分的结构。最后一个方法是使用ELM算法确定两个SLFN和线性模块的参数。为了评估泛化性能,将使用Rademacher复杂度来给出所提出模型的泛化界限并提供理论证明。所提出的模型可以为其固有的两个非线性结构跟踪并处理整个操作域中的强非线性和时变动力学。此外,利用ELM算法,该模型可实现快速学习速度和较低的计算复杂度。对两个典型的工业热过程的仿真证明了所研究模型的准确性和效率。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号