首页> 外文期刊>Neurocomputing >Correlation filter tracker with Siamese: A robust and real-time object tracking framework
【24h】

Correlation filter tracker with Siamese: A robust and real-time object tracking framework

机译:具有Siamese的相关过滤器跟踪器:一个强大的实时对象跟踪框架

获取原文
获取原文并翻译 | 示例

摘要

Correlation filter (CF) based trackers have shown promising performance in object tracking. However, both the accuracy and efficiency of existing CF based trackers are limited. In this paper, we propose a robust and real-time object tracking framework, based on a canonical CF tracker. Specifically, we first propose an adaptive model update strategy for preventing the tracker from being contaminated when the target is occluded or disappears in sight. Then, we propose a multimodal validation method for reducing tracking failures, which is capable of generating potential candidates adaptively and evaluating them with a siamese network. In addition, we build a template library online to augment the discriminability of the employed siamese network. Experimental results over OTB-13 and OTB-15 benchmark datasets demonstrate that our method outperforms state-of-the-art ones. Especially, on OTB-15, our method not only achieves a relative gain of 12.3% in AUC score but also runs at a high tracking speed, i.e., 58.3 frames per second, in comparison with the baseline CF tracker. (C) 2019 Elsevier B.V. All rights reserved.
机译:基于关联过滤器(CF)的跟踪器在对象跟踪中显示出令人鼓舞的性能。但是,现有基于CF的跟踪器的准确性和效率都受到限制。在本文中,我们提出了一个基于规范CF跟踪器的健壮且实时的对象跟踪框架。具体来说,我们首先提出一种自适应模型更新策略,以防止在目标被遮挡或消失时跟踪器被污染。然后,我们提出了一种用于减少跟踪失败的多模式验证方法,该方法能够自适应地生成潜在候选者并使用暹罗网络对其进行评估。此外,我们在线建立了模板库,以增强所用暹罗网络的可分辨性。在OTB-13和OTB-15基准数据集上的实验结果表明,我们的方法优于最新方法。尤其是在OTB-15上,与基线CF跟踪器相比,我们的方法不仅在AUC评分中获得了12.3%的相对增益,而且还以较高的跟踪速度(即每秒58.3帧)运行。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第17期|33-43|共11页
  • 作者单位

    South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China;

    South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China;

    South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China;

    City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visual object tracking; Correlation filter; Siamese network;

    机译:视觉目标跟踪;相关过滤器;连体网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号