首页> 外文期刊>Neurocomputing >Distributed variance-constrained robust filtering with randomly occurring nonlinearities and missing measurements over sensor networks
【24h】

Distributed variance-constrained robust filtering with randomly occurring nonlinearities and missing measurements over sensor networks

机译:分布方差受限的鲁棒滤波,具有随机发生的非线性和传感器网络上缺少测量结果

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the distributed variance-constrained robust filtering problem for a class of time-varying stochastic systems subject to both randomly occurring nonlinearities and missing measurements. The target plant is disturbed by the multiplicative noises, randomly occurring nonlinearities as well as additive noises. The phenomena of the randomly occurring nonlinearities and missing measurements are modeled by the Bernoulli distributed random variables with known occurrence probabilities. The available measurements of each sensor node and its neighbor nodes can be communicated based on the network topology structure. Attention is focused on the design of a new distributed variance-constrained robust filtering algorithm such that, in the simultaneous presence of the missing measurements, multiplicative noises and randomly occurring nonlinearities, an upper bound of the filtering error covariance is obtained via the solutions to two recursive matrix equations. Subsequently, the filter parameters are designed to minimize the obtained upper bound of the filtering error covariance. Furthermore, by utilizing the mathematical induction method, a sufficient condition is provided to guarantee the boundedness of the upper bound of the filtering error covariance. At last, we provide a numerical simulation to illustrate the effectiveness of distributed variance-constrained robust filtering method. (C) 2018 Published by Elsevier B.V.
机译:本文关注一类时变随机系统的分布方差约束鲁棒滤波问题,该系统同时具有随机发生的非线性和丢失的度量。目标植物受到乘法噪声,随机发生的非线性以及加性噪声的干扰。随机发生的非线性现象和丢失的测量值由具有已知发生概率的伯努利分布随机变量建模。每个传感器节点及其相邻节点的可用测量值可以基于网络拓扑结构进行通信。注意力集中在新的分布方差约束鲁棒滤波算法的设计上,这样,在缺少测量值,乘法噪声和随机出现的非线性同时存在的情况下,通过对两个解进行求解就可以得到滤波误差协方差的上限。递归矩阵方程。随后,将滤波器参数设计为最小化所获得的滤波误差协方差的上限。此外,通过利用数学归纳法,提供了充分的条件以保证滤波误差协方差的上限的有界。最后,我们提供了一个数值模拟来说明分布式方差约束鲁棒滤波方法的有效性。 (C)2018由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号