首页> 外文期刊>Neurocomputing >Automatic ICD-9 coding via deep transfer learning
【24h】

Automatic ICD-9 coding via deep transfer learning

机译:通过深度迁移学习自动进行ICD-9编码

获取原文
获取原文并翻译 | 示例

摘要

ICD-9 codes have been widely used to describe a patient's diagnosis. Accurate automatic ICD-9 coding is important because manual coding is expensive, time-consuming. Inspired by the recent successes of deep transfer learning, in this study, we propose a deep transfer learning framework for automatic ICD-9 coding. Our proposed method makes use of transferring MeSH domain knowledge to improve automatic ICD-9 coding. We demonstrate its effectiveness by achieving state-of-the-art performance with a value of 0.420 for Micro-averageF-measure on MIMIC-III dataset, which indicates that our method outperforms hierarchy-based SVM and flat-SVM. Furthermore, we analyze the deep neural network structure to discover the vital elements in the success of our proposed method. Our experimental results indicate that transfer learning is the key component to improve the performance of automatic ICD-9 coding and deep learning approach is the foundation in the success of our proposed model. In addition, to explore the best network architecture, we also compare the performance of multi-scale and sequential network architectures and find that using multi-scale network is better. Finally, we investigate the effects of transferring different percentage of samples on transfer learning and the results show that the best performance of target domain task can be obtained when 100% number samples are transferred.
机译:ICD-9代码已被广泛用于描述患者的诊断。准确的自动ICD-9编码很重要,因为手动编码既昂贵又费时。受深度转移学习的近期成功启发,在这项研究中,我们提出了一种用于自动ICD-9编码的深度转移学习框架。我们提出的方法利用转移MeSH域知识来改进自动ICD-9编码。我们通过在MIMIC-III数据集上的Micro-averageF-measure达到0.420的最新性能来证明其有效性,这表明我们的方法优于基于层次的SVM和Flat-SVM。此外,我们分析了深度神经网络结构,以发现成功提出的方法的关键要素。我们的实验结果表明,转移学习是提高ICD-9自动编码性能的关键组成部分,而深度学习方法是我们提出的模型成功的基础。此外,为了探索最佳的网络架构,我们还比较了多规模和顺序网络架构的性能,发现使用多规模网络会更好。最后,我们研究了转移不同百分比的样本对转移学习的影响,结果表明,当转移100%数量的样本时,可以获得目标域任务的最佳性能。

著录项

  • 来源
    《Neurocomputing》 |2019年第9期|43-50|共8页
  • 作者单位

    School of Information Science and Engineering, Central South University;

    School of Information Science and Engineering, Central South University;

    School of Information Science and Engineering, Central South University;

    School of Information Science and Engineering, Central South University;

    Department of Computer Science, Georgia State University;

    School of Information Science and Engineering, Central South University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Automatic ICD-9 coding; Deep learning; Transfer learning; MeSH;

    机译:自动ICD-9编码;深度学习;转移学习;MeSH;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号