首页> 外文期刊>Neurocomputing >Target heat-map network: An end-to-end deep network for target detection in remote sensing images
【24h】

Target heat-map network: An end-to-end deep network for target detection in remote sensing images

机译:目标热图网络:用于遥感图像目标检测的端到端深度网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on approaching fast and accurate target detection in high-resolution remote sensing images (RSIs). Recently, machine-learning based target detection systems have drawn increasing attention and some excellent target detection frameworks have been proposed for RSIs. However, huge storage and time consumption are still key flaws of those methods in practical applications. Especially, the employment of transfer learning would produce tremendous growth in parameters. A new target detection framework named target heat-map network (THNet) is proposed in this paper to address these problems. This framework consists of three parts: shallow features-extracting network, decoder network, and the location method. Firstly, we introduce the transfer-compression learning to train a shallow network under the supervision of a deep pre-trained network. Secondly, a decoder network is constructed to predict heat-map layers. Finally, a location method based on thresholding is proposed to identify positions of target instances. Compared with existing state-of-the-art methods including Faster-R-CNN, YOLOv2 and SSD, THNet with transfer learning has better performance, and THNet with transfer-compression learning also has superior performance in quantitative evaluation as well as significantly reducing time and saving storage, which makes it a great choice for applications with critical requirements for storage cost and running time. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们专注于在高分辨率遥感影像(RSI)中实现快速准确的目标检测。近来,基于机器学习的目标检测系统引起了越来越多的关注,并且针对RSI提出了一些出色的目标检测框架。但是,巨大的存储空间和时间消耗仍然是这些方法在实际应用中的主要缺陷。尤其是,使用转移学习将产生巨大的参数增长。为了解决这些问题,本文提出了一种新的目标检测框架,即目标热图网络(THNet)。该框架由三部分组成:浅层特征提取网络,解码器网络和定位方法。首先,我们介绍了传递压缩学习,以在深度预训练网络的监督下训练浅层网络。其次,构造解码器网络以预测热图层。最后,提出了一种基于阈值的定位方法来识别目标实例的位置。与现有的Faster-R-CNN,YOLOv2和SSD先进技术相比,具有转移学习功能的THNet具有更好的性能,具有转移压缩学习功能的THNet在定量评估方面也具有出色的性能,并且显着减少了时间并节省存储空间,这使其成为对存储成本和运行时间有严格要求的应用程序的理想选择。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第28期|375-387|共13页
  • 作者单位

    Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200000, Peoples R China|Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image processing; Target detection; Transfer learning; Target heat-map network, decoder network;

    机译:图像处理;目标检测;转移学习;目标热图网络;解码器网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号