首页> 外文期刊>Neurocomputing >Adaptive neural dynamic surface control of MIMO pure-feedback nonlinear systems with output constraints
【24h】

Adaptive neural dynamic surface control of MIMO pure-feedback nonlinear systems with output constraints

机译:具有输出约束的MIMO纯反馈非线性系统的自适应神经动态表面控制

获取原文
获取原文并翻译 | 示例

摘要

In this work, the problem of adaptive neural dynamic surface control (DSC) with the minimum adjustable parameters is discussed for a class of multi-input multi-output (MIMO) pure-feedback nonlinear systems with unmodeled dynamics and output constraints. An auxiliary signal designed by the characteristics of unmodeled dynamics is used to handle the dynamical uncertainties. The unknown continuous black-box functions produced in the controller design process are approximated by using radial basis function neural networks (RBFNNs). Based on an one-to-one nonlinear mapping(NM), the MIMO nonaffine nonlinear system with output constraints is transformed into a novel block-structure MIMO nonaffine nonlinear system without output constraints. Based on the transformed system and modified DSC, robust adaptive neural tracking control scheme is developed. Through theoretical analysis, all the signals in the closed-loop system are shown to be semi-globally uniformly ultimately bounded (SGUUB). A numerical example is provided to demonstrate the effectiveness of the proposed design strategy. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这项工作中,针对一类具有未建模动力学和输出约束的多输入多输出(MIMO)纯反馈非线性系统,讨论了具有最小可调参数的自适应神经动态表面控制(DSC)问题。由未建模的动力学特征设计的辅助信号用于处理动力学不确定性。使用径向基函数神经网络(RBFNN)可以对控制器设计过程中产生的未知连续黑盒函数进行近似。基于一对一的非线性映射(NM),将具有输出约束的MIMO非仿射非线性系统转换为一种新颖的无输出约束的块结构MIMO非仿射非线性系统。基于改造后的系统和改进的DSC,开发了鲁棒的自适应神经跟踪控制方案。通过理论分析,闭环系统中的所有信号都显示为半全局一致的最终有界(SGUUB)。提供了一个数值示例来证明所提出的设计策略的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号