首页> 外文期刊>Neurocomputing >Correntropy-based robust extreme learning machine for classification
【24h】

Correntropy-based robust extreme learning machine for classification

机译:基于熵的鲁棒极端学习分类机

获取原文
获取原文并翻译 | 示例

摘要

Correntropy is a local similarity measure between two arbitrary variables, and it has been applied in a variety of learning algorithms to improve noise insensitivity. In this paper, based on the correntropy, a non-convex and bounded loss function is obtained which contains second and higher order moments of the classification margin. And the novel loss function is robust to noises and close to the 0-1 loss function. Then we introduce it into extreme learning machine (ELM), and propose a correntropy-based robust ELM framework for classification, trained by half quadratic optimization to cope with non-convexity of the algorithm. To evaluate robustness, feature noise and label noise are simulated to provide noisy environments. Experimental results on benchmark datasets demonstrate that the proposed algorithm is better than original algorithms and robust algorithms. Moreover, the superiority of proposed algorithm in noisy environment is more evident, which further proves its robustness to noises. (C) 2018 Elsevier B.V. All rights reserved.
机译:熵是两个任意变量之间的局部相似性度量,它已被应用于各种学习算法中以改善对噪声的不敏感性。本文基于熵,获得了一个非凸有界损失函数,该函数包含了分类余量的二阶和更高阶矩。并且新颖的损失函数对噪声具有鲁棒性,并且接近0-1损失函数。然后将其引入极限学习机(ELM),并提出了一种基于熵的鲁棒ELM框架进行分类,并通过半二次优化训练以应对算法的非凸性。为了评估鲁棒性,模拟了特征噪声和标签噪声以提供嘈杂的环境。在基准数据集上的实验结果表明,该算法优于原始算法和鲁棒算法。此外,该算法在噪声环境下的优越性更加明显,进一步证明了其对噪声的鲁棒性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第3期|74-84|共11页
  • 作者

    Ren Zhuo; Yang Liming;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号