首页> 外文期刊>Neurocomputing >A multiobjective optimization-based sparse extreme learning machine algorithm
【24h】

A multiobjective optimization-based sparse extreme learning machine algorithm

机译:基于多目标优化的稀疏极限学习机算法

获取原文
获取原文并翻译 | 示例

摘要

Extreme Learning Machine (ELM) is a popular machine learning method and has been widely applied to real-world problems due to its fast training speed and good generalization performance. However, in ELM, the randomly assigned input weights and hidden biases usually degrade the generalization performance. Furthermore, ELM is considered as an empirical risk minimization model and easily leads to overfitting when dataset exists some outliers. In this paper, we proposed a novel algorithm named Multiobjective Optimization-based Sparse Extreme Learning Machine (MO-SELM), where parameter optimization and structure learning are integrated into the learning process to simultaneously enhance the generalization performance and alleviate the overfitting problem. In MO-SELM, the training error and the connecting sparsity are taken as two conflicting objectives of the multiobjective model, which aims to find sparse connecting structures with optimal weights and biases. Then, a hybrid encoding-based MOEA/D is used to optimize the multiobjective model. In addition, ensemble learning is embedded into this algorithm to make decisions after multiobjective optimization. Experimental results of several classification and regression applications demonstrate the effectiveness of the proposed MO-SELM. (C) 2018 Elsevier B.V. All rights reserved.
机译:极限学习机(Extreme Learning Machine,ELM)是一种流行的机器学习方法,由于其快速的训练速度和良好的泛化性能,已广泛应用于现实世界中的问题。但是,在ELM中,随机分配的输入权重和隐藏的偏差通常会降低泛化性能。此外,ELM被认为是经验风险最小化模型,当数据集存在某些异常值时,很容易导致过度拟合。在本文中,我们提出了一种基于多目标优化的稀疏极限学习机(MO-SELM),该算法将参数优化和结构学习集成到学习过程中,同时提高了泛化性能并缓解了过度拟合的问题。在MO-SELM中,训练误差和连接稀疏度被视为多目标模型的两个冲突目标,该目标旨在找到具有最佳权重和偏差的稀疏连接结构。然后,基于混合编码的MOEA / D用于优化多目标模型。另外,集成学习被嵌入到该算法中,以在多目标优化后做出决策。几种分类和回归应用的实验结果证明了提出的MO-SELM的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号